

beyond boundaries...

PROGRAMMABLE OVERVOLTAGE PROTECTOR

DESCRIPTION:

The ALPSVG110S is a programmable overvoltage protection device designed to protect modern dual polarity supply rail ringing SLICs (Subscriber Line Interface Circuits) against over voltages on the telephone line. Over voltages can be caused by lightning, AC power contact and induction. Four separate protection structures are used; two positive and two negative to provide optimum protection during Metallic (Differential) and Longitudinal (Common Mode) protection conditions in both polarities. Dynamic protection performance is specified under typical international surge waveforms from Telcordia GR-1089-CORE, ITU-T K.44 and YD/T 950.

FEATURES:

- High Performance Protection for SLICs
- Wide Programming Range (-110V to +110V)
- Low gate triggering current 5 mA max
- Surge capability does not degrade after multiple surge events within its ratings
- High holding current 150mA min
- RoHS Compliant

APPLICATIONS:

- Wireless In the Local Loop (WLL)
- Voice applications which require regenerated POTS
- VolP applications
- ➤ PBX
- > FXS applications
- Digital Pair Gain systems (DPG)
- Digital Loop Carrier systems (DLC)
- Small Office Home Office (SOHO)

MAXIMUM RATINGS

MAXIMUM RATINGS @ T _A = 25 °C unless otherwise specified				
PARAMETER	SYMBOL	RATINGS	UNIT	
Non-repetitive peak impulse current (1, 2, 3, 4)				
10/1000μS (Telcordia GR-1089-CORE)	1	±30	A	
5/310μS (ITU-T K.20, K.21, K.45, K.44 wave shape 10/700s)	I _{PPSM}	±68	A	
2/10μS (Telcordia GR-1089-CORE)		±100		
Non-repetitive peak on-state current, 50 Hz / 60 Hz (1, 2, 3, 5)				
0.2s	I _{TSM}	9.0	A	
1s	ITSM	5.0	A	
900s		1.7		
Repetitive peak off-state voltage				
$V_{G1(Line)} = 0, V_{G2} \ge +5 \text{ V}$	V_{DRM}	-120	V	
$V_{G2(Line)} = 0, V_{G1} \ge -5 V$		+120		
Maximum negative battery supply voltage	V_{G1M}	-110	V	
Maximum positive battery supply voltage	V_{G2M}	+110	V	
Maximum differential battery supply voltage	△V(BAT)M	220	V	
Operating Junction Temperature	TJ	-40 to +150	°C	
Storage Temperature Range	T _{STG}	-65 to +150	°C	
Thermal Resistance Junction to Ambient (6)	$R_{ heta JA}$	55 (Typ.)	°C/W	

Note:

- 1. Initially the device must be in thermal equilibrium with $T_J = 25$ °C. The surge may be repeated after the device returns to its initial conditions.
- 2. The rated current values may be applied to either of the Line to Ground terminal pairs. Additionally, both terminal pairs may have their rated current values applied simultaneously (in this case the Ground terminal current will be twice the rated current value of a single terminal pair.
- 3. Rated currents only apply if pins 6 & 7 (Ground) are connected together.
- 4. Applies for the following bias conditions: V_{G1} = -20 V to -110 V, V_{G2} = 0 V to +110 V.
- 5. EIA/JESD51-2 environment and EIA/JESD51-7 high effective thermal conductivity test board (multi-layer) connected with 0.6 mm printed wiring track widths.
- 6. EIA/JESD51-2 Environment, PTOT = 4W, EIA/JESD51-7 high effective thermal conductivity test board (multi-layer) connected with 0.6 mm printed wiring track widths.

beyond boundaries...

ELECTRICAL CHARACTERISTICS @ TA = 25 °C unless otherwise specified

PARAMETER	CONDITIONS	SYMBOL	MIN	TYP.	MAX	UNIT
Off-state current	$V_D = V_{DRM}, V_{G1(Line)} = 0, V_{G2} \ge +5 \text{ V}$				_	μΑ
	T _A = 25°C T _A = 85°C	ΙD			-5 -50	
	$V_D = V_{DRM}, V_{G2(Line)} = 0, V_{G1} \ge -5 \text{ V}$				-30	
	$T_A = 25^{\circ}C$				+5	
	T _A = 85°C				+50	
Negative-gate leakage current	V _{G1(Line)} = -220 V	I _{G1(Line)}			-5	μΑ
Positive-gate leakage current	V _{G2(Line)} = +220 V	I _{G2(Line)}			+5	μΑ
Gate-Line impulse breakover	V _{G1} = -100V, I _T = -100 A ⁽⁷⁾ 2/10 μs	V _{G1L(BO)}			-15	V
voltage	V _{G1} = -100V, I _T = -30 A 10/1000μs	V GIL(BO)			-11	•
Gate-Line impulse breakover	Vc21 (20)			+15	V	
voltage	V _{G1} = +100V, I _T = +30 A 10/1000μs	▼ GZL(BO)			+11	V
Negative holding current	V _{G1} = -60 V, I _T = -1A, di/dt= 1A/ms	I _H -	-150			mA
Negative-gate trigger current	$I_T = -5A$, $tp(g) \ge 20\mu s$, $V_{G1} = -60V$	I _{G1T}			+5	mA
Positive-gate trigger current	$I_T = +5A$, $tp(g) \ge 20\mu s$, $V_{G2} = 60V$	I _{G2T}			-5	mA
Line – Ground off-state capacitance	f = 1MHz, VD = -3V, G1 & G2 open circuit	Co		32		pF

beyond boundaries...

TYPICAL DEVICE RATING AND CHARACTERISTICS CURVES (TA = 25 °C unless otherwise noted)

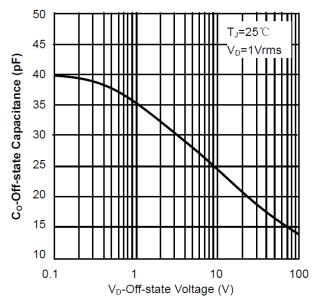
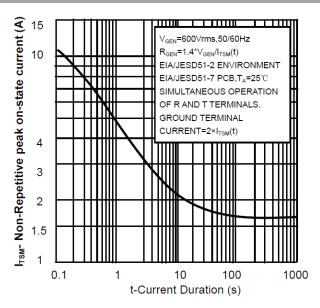
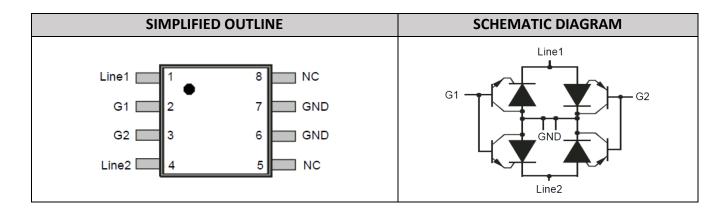
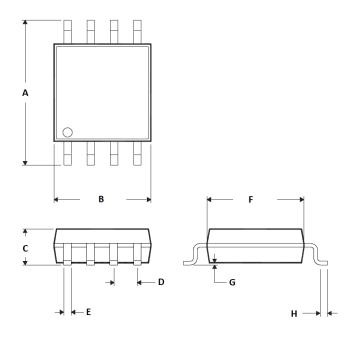


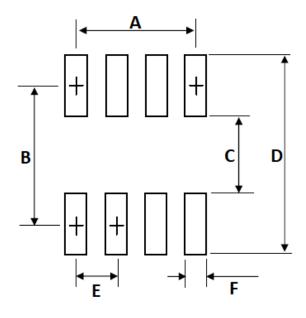
Fig.1 OFF-STATE CAPACITANCE
VS
OFF-STATE VOLTAGE




Fig.2 NON-REPETITIVE PEAK ON-STATE CURRENT VS

CURRENT DURATION


PINNING INFORMATION


PACKAGE INFORMATION

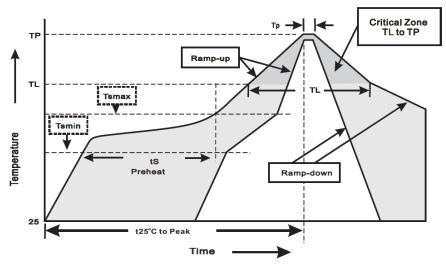
8-SOIC

OUTLINE DIMENSIONS				
CVMDOL	MILLIMETERS			
SYMBOL	MIN	MAX		
А	7.40	8.20		
В	5.00	5.60		
С	2.20 Max.			
D	1.27 Typ.			
E	0.35	0.51		
F	5.00	5.60		
G	0.10 Min.			
Н	0.66 Тур.			

SUGGESTED SOLDER PAD LAYOUT

OUTLINE DIMENSIONS		
SYMBOL	MILLIMETERS	
А	3.81	
В	7.00	
С	4.80	
D	9.20	
Е	1.27	
F	0.60	
	_	

Note:


- 1. Controlling dimension: in millimeters.
- 2. General tolerance: ±0.05mm
- 3. The pad layout is for reference purposes only.

SOLDERING PARAMETERS

SUGGESTED THERMAL PROFILES FOR SOLDERING PROCESSES

- 1. Storage environment: Temperature=5 °C~40 °C Humidity=55% ±25%
- 2. Reflow soldering of surface-mount devices

3. Reflow soldering

PROFILE FEATURE	SOLDERING CONDITION
Average ramp-up rate (T _L to T _P)	<3 °C/sec
Preheat	
- Temperature Min (T _{smin})	150 °C
- Temperature Max (T _{smax})	200 °C
- Time (min to max) (t₅)	60 ~ 120 sec
T _{smax} to T _L	
- Ramp-upRate	<3 °C/sec
Time maintained above:	
- Temperature (T _L)	217 °C
- Time(tL)	60 ~ 260 sec
Peak Temperature (T _P)	255 °C-0/+5 °C
Time within 5 °C of actual Peak	10 ~ 30 sec
Temperature(tP)	
Ramp-down Rate	<6 °C/sec
Time 25 °C to Peak Temperature	<6 minutes

CUSTOMER NOTE:

DISCLAIMER

The product information and the selection guide facilitates the selection of the ALPINESEMI™'s Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review the Data sheet(s) so as to confirm that the Device(s) meets functionality parameters for your application. The information furnished on the Data Sheet and the ALPINESEMI™'s Web Site is believed to be accurate and reliable at the time of preparation of this document. ALPINESEMI™ however, does not assume any inaccuracies that may arise when the components are mounted and removed. Furthermore, ALPINESEMI™ does not assume liability whatsoever, arising out of the application or the use of any of ALPINESEMI™'s product(s). Neither, does it convey any license under its patent rights nor the rights of others. These products are not guaranteed for use in life saving/support appliances or systems. ALPINESEMI™'s customers using these products (either as individual Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and ALPINESEMI™ will not be responsible in any way(s) for any damage(s) resulting from such use.

Please check the website www.alpinesemi.com for continues updates and revision of datasheets.

DESIGN CHANGES: ALPINESEMI™ strives for continuous improvement and reserves the right to change the specifications of its products without prior notice. ALPINESEMI™ reserves the right to discontinue product lines without prior notice. Any product selection is a recommendation based on best understanding of such product(s) by our engineers. However, buyers are advised to rely on their own judgment for such selection of the products.

ALPINESEMI™ makes no warranty, representation or guarantee regarding the suitability of its products for any particular applications. Neither does ALPINESEMI™ assume any liability arising out of the applications nor the use of such products. ALPINESEMI™ specifically disclaims all liabilities either consequential or incidental.

All rights of the product and datasheet are reserved to ALPINESEMI™.

All logos and information provided in the datasheets are for reference only. Any registered and/or trademark/logos belonging to respective companies be the property of those companies. ALPINESEMI™ extends the courtesy to them, if any of the information found in its datasheet.

Component Disposal Instructions

- 1. ALPINESEMI™ Semiconductor Devices are RoHS compliant and hence customers are requested to dispose as per the prevailing Environmental Legislation put forth in their specific country.
- 2. In Europe, please dispose as per EU Directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE).

sales@alpinesemi.com www.alpinesemi.com