


# **N-CHANNEL SMD POWER MOSFET**

# **DESCRIPTION:**



The ALPSBSS123 is an 100V N-Channel enhanced mode power MOSFET.

The ALPSBSS123 has Low On-Resistance @ max  $6.0\Omega$ , typical input: 42.7pF & out: 14pF capacity, threshold of max 2.0v with fast switching speed (typ 20ns) Lead free RoHS complaint component.

## **FEATURES:**

Low On-Resistance: 6.0  $\Omega$ 

Low Input Capacitance: typ 42.7pF

Low Output Capacitance: 14pF

Low Threshold: max 2.0V

Fast Switching Speed: typ 20ns

Lead free parts meet RoHS Compliant

Suffix "-H" indicated Halogen Free part, ex. ALPSBSS123-H

#### **APPLICATIONS:**

- DC to DC Converter
- Cellular & PCMCIA Card
- Cordless Telephone
- Power Management in Portable and Battery etc.



# **MAXIMUM RATINGS**

| <b>MAXIMUM RATINGS @ <math>T_A = 25</math> °C unless otherwise specified</b> |                |     |      |     |       |
|------------------------------------------------------------------------------|----------------|-----|------|-----|-------|
| PARAMETER                                                                    | SYMBOL         | MIN | TYP. | MAX | UNIT  |
| Drain-Source Voltage                                                         | $V_{DSS}$      |     |      | 100 | V     |
| Gate-Source Voltage                                                          | $V_{GS}$       |     |      | ±20 | V     |
| Non-repetitive (tp ≤ 50μs)                                                   | $V_{GSM}$      |     |      | ±40 | V     |
| Continuous¹ Drain Current                                                    | $I_{D}$        |     |      | 170 | mA    |
| Pulsed <sup>2</sup> Drain Current                                            | $I_{DM}$       |     |      | 680 | mA    |
| Total Power Dissipation FR-5                                                 |                |     |      | 225 | mW    |
| Board <sup>3</sup>                                                           | D              |     |      |     |       |
| T <sub>A</sub> =25 °C                                                        | P <sub>D</sub> |     |      |     |       |
| Derated above 25 °C                                                          |                |     |      | 1.8 | mW/°C |
| Typical Thermal Resistance Junction to<br>Ambient                            | $R_{	heta JA}$ |     | 556  |     | °C/W  |
| Operating Junction Temperature Range                                         | Tı             | -55 |      | 150 | °C    |
| Storage Temperature Range                                                    | $T_{stg}$      | -55 |      | 150 | °C    |

## Note:

<sup>&</sup>lt;sup>1</sup> – The power dissipation of the package may result in a lower continuous drain current.

 $<sup>^{2}</sup>$  – Pulse Width ≤ 300 µs, Duty Cycle ≤ 2.0%

 $<sup>^{3}</sup>$  – FR-5 = 1.0 x 0.75 x 0.062 in



# ELECTRICAL CHARACTERISTICS @ TA = 25 °C unless otherwise specified

| STATIC CHARACTERISTICS                                             |                     |     |      |     |      |
|--------------------------------------------------------------------|---------------------|-----|------|-----|------|
| PARAMETER                                                          | SYMBOL              | MIN | TYP. | MAX | UNIT |
| Off Characteristics                                                |                     |     |      |     |      |
| Drain-Source Breakdown Voltage                                     |                     | 100 |      |     |      |
| VGS=0V, ID=250 μA                                                  | B <sub>VDSS</sub>   | 100 |      |     | V    |
| Zero Gate Voltage Drain Current                                    |                     |     |      |     |      |
| V <sub>DS</sub> =100V, V <sub>GS</sub> =0V, T <sub>j</sub> =125 °C | I <sub>DSS</sub>    |     |      | 15  | μΑ   |
| V <sub>DS</sub> =100V, V <sub>GS</sub> =0V, T <sub>j</sub> =125 °C |                     |     |      | 60  |      |
| Gate-body Leakage Current                                          |                     |     |      | F0  | A    |
| V <sub>GS</sub> = 20V, V <sub>DS</sub> = 0V                        | I <sub>GSS</sub>    |     |      | 50  | nA   |
| On Characteristics <sup>4</sup>                                    |                     |     |      |     |      |
| Gate-Threshold Voltage                                             | .,                  | 0.0 |      | 2.0 | V    |
| $V_{DS} = V_{GS}$ , $I_D = 1.0 \text{ mA}$                         | $V_{GS(th)}$        | 0.8 |      | 2.8 | V    |
| Static Drain-to-Source On-Resistance                               | D                   |     | 5.0  | 6.0 | 0    |
| V <sub>GS</sub> = 10V, I <sub>D</sub> = 100mA                      | R <sub>DS(ON)</sub> |     | 5.0  | 0.0 | Ω    |
| Forward Trans Conductance                                          | Q.                  | 8.0 |      |     | S    |
| $V_{GS} = 0V$ , $I_D = 100 \text{ mA}$                             | <b>G</b> fs         | 0.0 |      |     | 3    |

| DYNAMIC CHARACTERISTICS                                  |                  |     |      |     |      |
|----------------------------------------------------------|------------------|-----|------|-----|------|
| PARAMETER                                                | SYMBOL           | MIN | TYP. | MAX | UNIT |
| Input Capacitance                                        |                  |     | 42.7 |     | nΓ   |
| V <sub>DS</sub> = 25V, V <sub>GS</sub> = 0V, f = 1.0 MHz | C <sub>iss</sub> |     | 42.7 |     | pF   |
| Output Capacitance                                       |                  |     | 1.4  |     | F    |
| V <sub>DS</sub> = 25V, V <sub>GS</sub> = 0V, f = 1.0 MHz | C <sub>oss</sub> |     | 14   |     | pF   |
| Reserve Transfer Capacitance                             | 6                |     | 3.0  |     | E    |
| V <sub>DS</sub> = 25V, V <sub>GS</sub> = 0V, f = 1.0 MHz | C <sub>rss</sub> |     | 3.0  |     | pF   |
| Total Gate Charge                                        | Qg               |     | 6.32 |     | nC   |
| $V_{DS} = 10V$ , $V_{GS} = 10V$ , $I_D = 0.22A$          | Qg               |     | 0.52 |     | 110  |
| Gate-Source Charge                                       | Qgs              |     | 1.55 |     | nC   |
| $V_{DS} = 10V$ , $V_{GS} = 10V$ , $I_D = 0.22A$          | Qgs              |     | 1.55 |     | 110  |
| Gate-Drain Charge                                        | $Q_{gd}$         |     | 0.68 |     | nC   |
| $V_{DS} = 10V$ , $V_{GS} = 10V$ , $I_{D} = 0.22A$        | ∠ga              |     | 0.00 |     | iic  |

| SWITCHING CHARACTERISTICS⁴                                            |                     |     |      |     |      |
|-----------------------------------------------------------------------|---------------------|-----|------|-----|------|
| PARAMETER                                                             | SYMBOL              | MIN | TYP. | MAX | UNIT |
| Turn-On Delay Time                                                    | t <sub>d(on)</sub>  |     | 20   |     | nS   |
| $V_{CC}$ = 30V, $I_C$ = 0.28A, $V_{GS}$ = 10V, $R_{GS}$ = 50 $\Omega$ |                     |     |      |     |      |
| Turn-Off Delay Time                                                   | t <sub>d(off)</sub> |     | 40   |     | nS   |
| $V_{CC}$ = 30V, $I_C$ = 0.28A, $V_{GS}$ = 10V, $R_{GS}$ = 50 $\Omega$ |                     |     |      |     |      |

| REVERSE DIODE                 |          |     |      |     |      |
|-------------------------------|----------|-----|------|-----|------|
| PARAMETER                     | SYMBOL   | MIN | TYP. | MAX | UNIT |
| Diode Forward On-Voltage      | $V_{SD}$ |     |      | 1.3 | V    |
| $I_D = 0.34A$ , $V_{GS} = 0V$ |          |     |      |     |      |

Note:  $^4$  – Pulse test: Pulse width  $\le 300\mu$ s, duty cycle  $\le 2.0\%$ 



# TYPICAL DEVICE RATING AND CHARACTERISTICS CURVES (T<sub>A</sub> = 25 °C unless otherwise noted)

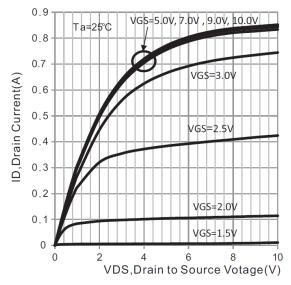



Fig.1 I<sub>D</sub> vs V<sub>DS</sub>

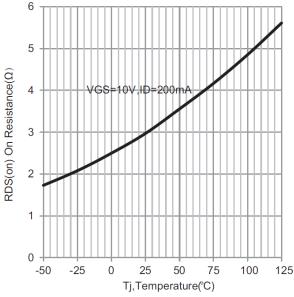



Fig.3 R<sub>DS(on)</sub> vs T<sub>j</sub>

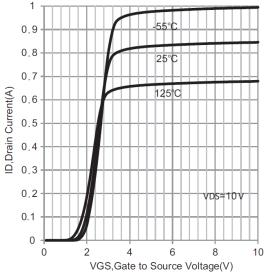



Fig.2 I<sub>D</sub> vs V<sub>GS</sub>

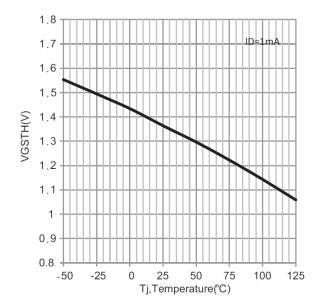
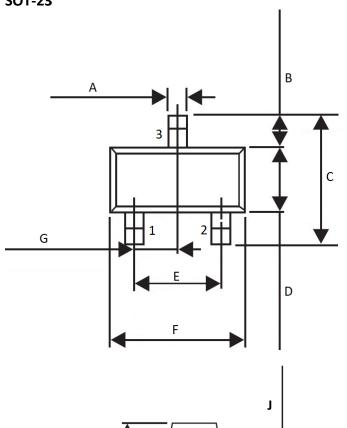


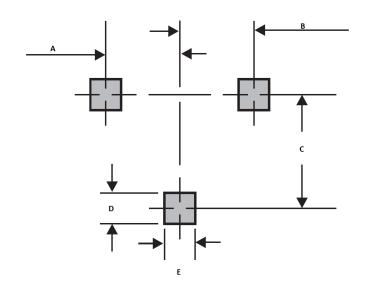

Fig.4 V<sub>GS(th)</sub> vs T<sub>j</sub>




# **PINNING INFORMATION**

| PIN                                    | SIMPLIFIED OUTLINE | SYMBOL |
|----------------------------------------|--------------------|--------|
| PinD Drain<br>PinG Gate<br>PinS Source |                    | Gate   |




# **PACKAGE INFORMATION**

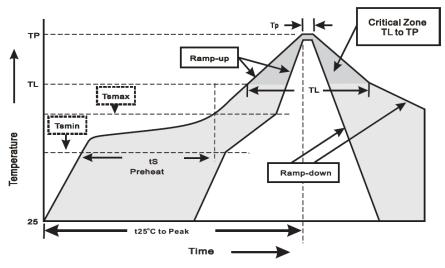
## **SOT-23**



| OUTLINE DIMENSIONS |        |        |       |       |  |
|--------------------|--------|--------|-------|-------|--|
|                    | MILLII | METERS | INCH  | IES   |  |
| SYMBOL             | MIN    | MAX    | MIN   | MAX   |  |
| Α                  | 0.30   | 0.50   | 0.012 | 0.020 |  |
| В                  | 0.32   | 0.67   | 0.013 | 0.027 |  |
| С                  | 2.10   | 2.75   | 0.083 | 0.108 |  |
| D                  | 1.20   | 1.60   | 0.047 | 0.063 |  |
| E                  | 1.70   | 2.10   | 0.068 | 0.084 |  |
| F                  | 2.80   | 3.04   | 0.110 | 0.120 |  |
| G                  | 0.85   | 1.05   | 0.034 | 0.041 |  |
| Н                  | 0.89   | 1.30   | 0.035 | 0.051 |  |
| J                  | 0.09   | 0.18   | 0.003 | 0.007 |  |

# **PAD LAYOUT**




| OUTLINE DIMENSIONS |             |        |  |  |  |
|--------------------|-------------|--------|--|--|--|
| SYMBOL             | MILLIMETERS | INCHES |  |  |  |
| Α                  | 0.95        | 0.037  |  |  |  |
| В                  | 0.95        | 0.037  |  |  |  |
| С                  | 2.00        | 0.079  |  |  |  |
| D                  | 0.90        | 0.035  |  |  |  |
| Е                  | 0.80        | 0.031  |  |  |  |



# **SOLDERING PARAMETERS**

## SUGGESTED THERMAL PROFILES FOR SOLDERING PROCESSES

- 1. Storage environment: Temperature=5 °C~40 °C Humidity=55% ±25%
- 2. Reflow soldering of surface-mount devices



## 3. Reflow soldering

| PROFILE FEATURE                                          | SOLDERING CONDITION |
|----------------------------------------------------------|---------------------|
| Average ramp-up rate (T <sub>L</sub> to T <sub>P</sub> ) | <3 °C/sec           |
| Preheat                                                  |                     |
| - Temperature Min (T <sub>smin</sub> )                   | 150 °C              |
| - Temperature Max (T <sub>smax</sub> )                   | 200 °C              |
| - Time (min to max) (t <sub>s</sub> )                    | 60 ~ 120 sec        |
| T <sub>smax</sub> to T <sub>L</sub>                      |                     |
| - Ramp-upRate                                            | <3 °C/sec           |
| Time maintained above:                                   |                     |
| - Temperature (T <sub>L</sub> )                          | 217 °C              |
| - Time(tL)                                               | 60 ~ 260 sec        |
| Peak Temperature (T <sub>P</sub> )                       | 255 °C-0/+5 °C      |
| Time within 5 °C of actual Peak                          | 10 ~ 30 sec         |
| Temperature(tP)                                          |                     |
| Ramp-down Rate                                           | <6 °C/sec           |
| Time 25 °C to Peak Temperature                           | <6 minutes          |



#### **CUSTOMER NOTE:**

#### **DISCLAIMER**

The product information and the selection guide facilitates the selection of the ALPINESEMI™'s Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review the Data sheet(s) so as to confirm that the Device(s) meets functionality parameters for your application. The information furnished on the Data Sheet and the ALPINESEMI™'s Web Site is believed to be accurate and reliable at the time of preparation of this document. ALPINESEMI™ however, does not assume any inaccuracies that may arise when the components are mounted and removed. Furthermore, ALPINESEMI™ does not assume liability whatsoever, arising out of the application or the use of any of ALPINESEMI™'s product(s). Neither, does it convey any license under its patent rights nor the rights of others. These products are not guaranteed for use in life saving/support appliances or systems. ALPINESEMI™'s customers using these products (either as individual Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and ALPINESEMI™ will not be responsible in any way(s) for any damage(s) resulting from such use.

Please check the website www.alpinesemi.com for continues updates and revision of datasheets.

DESIGN CHANGES: ALPINESEMI™ strives for continuous improvement and reserves the right to change the specifications of its products without prior notice. ALPINESEMI™ reserves the right to discontinue product lines without prior notice. Any product selection is a recommendation based on best understanding of such product(s) by our engineers. However, buyers are advised to rely on their own judgment for such selection of the products.

ALPINESEMI™ makes no warranty, representation or guarantee regarding the suitability of its products for any particular applications. Neither does ALPINESEMI™ assume any liability arising out of the applications nor the use of such products. ALPINESEMI™ specifically disclaims all liabilities either consequential or incidental.

All rights of the product and datasheet are reserved to ALPINESEMI™.

All logos and information provided in the datasheets are for reference only. Any registered and/or trademark/logos belonging to respective companies be the property of those companies. ALPINESEMI™ extends the courtesy to them, if any of the information found in its datasheet.

#### **Component Disposal Instructions**

- 1. ALPINESEMI™ Semiconductor Devices are RoHS compliant and hence customers are requested to dispose as per the prevailing Environmental Legislation put forth in their specific country.
- 2. In Europe, please dispose as per EU Directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE).



sales@alpinesemi.com www.alpinesemi.com