SILICON CARBIDE SCHOTTKY DIODE

DESCRIPTION:

The ALPS06504A is Silicon Carbide Schottky Diode with Zero Reverse Recovery Current, Zero Forward Recovery Voltage and High-Frequency Operation in Applications like Switching Mode Power Supply.

FEATURES:

- > Zero Reverse Recovery Current
- Zero Forward Recovery Voltage
- ➤ High-Frequency Operation
- Temperature Independent Switching Behavior
- Extremely Fast Switching
- Positive Temperature Coefficient on VF
- Replace Bipolar with Unipolar Rectifiers
- Essentially No Switching Losses
- ➤ High Efficiency
- Reduction of Heat Sink Requirements
- Parallel Devices Without Thermal Runaway
- Lead-free parts meet RoHS requirements

APPLICATIONS:

- Switching Mode Power Supply
- Power Factor Correction

MECHANICAL CHARACTERISTICS

- Epoxy: Molding compound meets UL 94 V-0 flammability rating.
- Case: Molded TO-220AC.

beyond boundaries...

TYPICAL DEVICE CHARACTERISTICS

MAXIMUM RATINGS (T _A = 25 °C unless otherwise noted)					
PARAMETER	TEST CONDITIONS	SYMBOL	VALUE	UNITS	
Repetitive Peak Reverse Voltage		V_{RRM}	650	Volts	
Surge Peak Reverse Voltage		V_{RSM}	650	Volts	
DC Blocking Voltage		V_{DC}	650	Volts	
	T _C =25°C		11	Amps	
Continuous Forward Current	T _C =125°C	I _F	7		
	T _C =150°C		4		
Repetitive Peak Forward Surge Current	T_C =25°C, t_P =10 mS, Half Sine Wave	I _{FRM}	20	Amps	
Non-Repetitive Peak Forward Surge Current	T _C =25°C, t _P =10 mS, Half Sine Wave	I _{FSM}	25	Amps	
	T _C =25°C	48			
Power Dissipation	T _C =110°C	P _{tot}	22	Watts	
Operating Junction temperature range		TJ	-55 to +150	°C	
Storage temperature range		T _{STG}	-55 to +150	°C	

THERMAL CHARACTERISTICS (T _A = 25 °C unless otherwise noted)				
PARAMETER	SYMBOL	TYP.	UNIT	
Thermal Resistance from Junction to Case	R _{θJC}	1.16	°C/W	

ELECTRICAL CHARACTERISTICS (T _A = 25 °C unless otherwise noted)					
PARAMETER	TEST CONDITIONS	SYMBOL	TYP.	MAX	UNIT
Forward Voltage	I _F = 4A T _J =25°C	V _F	1.45	1.6	Volts
	I _F = 4A T _J =175°C	VF	1.63	1.8	
Reverse current	V _R = 650V T _J =25°C		0.1	25	4
	V _R = 650V T _J =175°C	I _R	0.8	100	μΑ
Total Capacitive Charge	$V_R = 400V$, $I_F = 4A$ $di/dt = 500 A/\mu S$ $T_J = 25^{\circ} C$	Qc	15.4		nC
Total Capacitance	V _R = 0V, T _J = 25°C, f = 1 MHz		289		
	V _R = 200V, T _J = 25°C, f = 1 MHz	С	30		pF
	$V_R = 400V$, $T_J = 25$ °C, $f = 1$ MHz		22		

beyond boundaries...

TYPICAL DEVICE CHARACTERISTICS CURVES

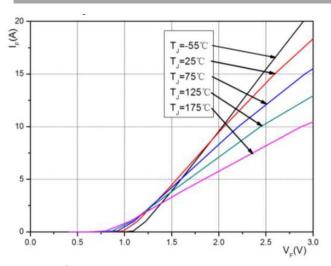


Fig1. FORWARD CHARACTERISTICS

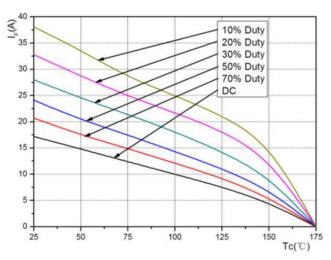


Fig3. CURRENT DERATING

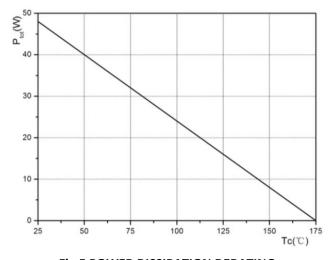


Fig.5 POWER DISSIPATION DERATING

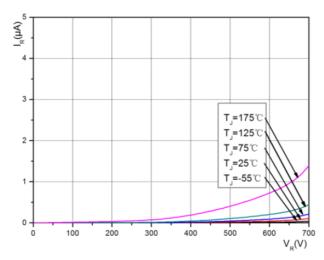


Fig2. REVERSE CHARACTERISTICS

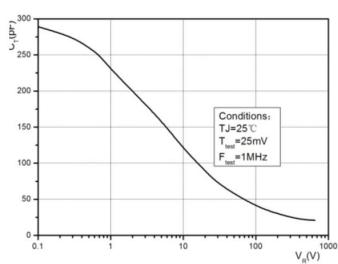


Fig4. CAPACITANCE VS. REVERSE VOLTAGE

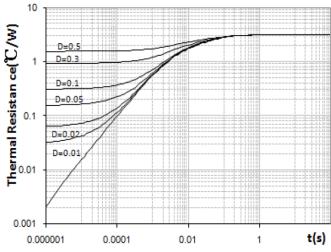
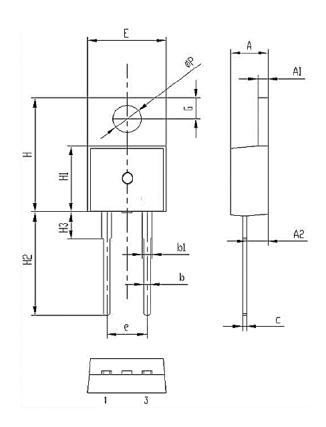


Fig.6 TRANSIENT THERMAL IMPEDANCE

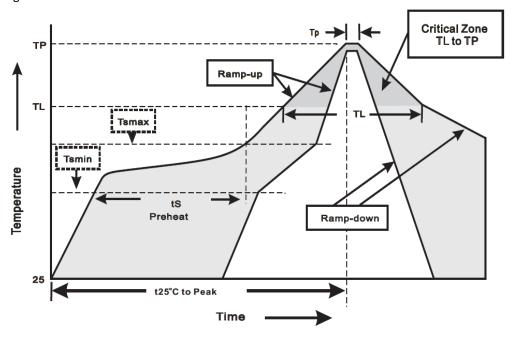

beyond boundaries...

PINNING INFORMATION

SIMPLIFIED OUTLINE	SYMBOL
	PIN 1 O CASE

PACKAGE INFORMATION

TO-220AC


		OUTLINE DIMENSIONS				
				INCHES		
DIM	MIN	TYP	MAX	MIN	TYP	MAX
Α	4.30	4.50	4.70	0.169	0.177	0.185
A1	1.20	1.30	1.40	0.047	0.051	0.055
A2	2.30	2.40	2.50	0.091	0.094	0.098
b	0.60	0.80	1.00	0.024	0.031	0.039
b1	1.10	1.30	1.50	0.043	0.051	0.059
С	0.40	0.50	0.60	0.016	0.020	0.024
е	4.88	5.08	5.28	0.192	0.200	0.208
Е	9.80	10.00	10.20	0.386	0.394	0.402
Н	15.50	15.70	15.90	0.610	0.618	0.626
H1	9.00	9.20	9.40	0.354	0.362	0.370
H2	12.50	13.00	13.50	0.492	0.512	0.531
Н3	2.80	3.00	3.20	0.110	0.118	0.126
G	2.60	2.80	3.00	0.102	0.110	0.118
ФР	3.40	3.60	3.80	0.134	0.142	0.150

NOTES
1. Dimensions are exclusive of mold flash and metal burrs.

SOLDERING PARAMETERS

SUGGESTED THERMAL PROFILES FOR SOLDERING PROCESSES

- 1. Storage environment: Temperature=5 °C~40 °C Humidity=55% ±25%
- 2. Reflow soldering of surface-mount devices

3. Reflow soldering

PROFILE FEATURE	SOLDERING CONDITION
Average ramp-up rate (T _L to T _P)	<3 °C/sec
Preheat	
- Temperature Min (T _{smin})	150 °C
- Temperature Max (T _{smax})	200 °C
- Time (min to max) (t₅)	60 ~ 120 sec
T _{smax} to T _L	
- Ramp-upRate	<3 °C/sec
Time maintained above:	
- Temperature (T∟)	217 °C
- Time(tL)	60 ~ 260 sec
Peak Temperature (T _P)	255 °C-0/+5 °C
Time within 5 °C of actual Peak Temperature(tP)	10 ~ 30 sec
Ramp-down Rate	<6 °C/sec
Time 25 °C to Peak Temperature	<6 minutes

PRODUCT HIGH RELIABLITY TEST CAPABILITIES

ITEM	TEST CONDITIONS	STANDARD
Solder Resistance	At 260±5°C for 10±2Sec.	MIL-STD-750D METHOD-2031
Solderability	At 245±5°C for 5 sec.	MIL-STD-202F METHOD-208
High Temperature Reverse Bias	V_R = 80% rate at T_J =150° for 168 hrs.	MIL-STD-750D METHOD-1038
Forward Operation Life	Rated average rectifier current at T _A =25 C for 500hrs	MIL-STD-750D METHOD-1027
Intermittent Operation Life	T_A = 25 °C, I_F = I_O On state: power on for 5 min. off state: power off for 5 min. on and off for 500 cycles.	MIL-STD-750D METHOD-1036
Pressure Cooker	15P _{SIG} at T _A =121°C for 4Hrs	JESD22-A102
Temperature Cycling	-55°C to +125°C dwelled for 30min and transferred for 5min. total 10 cycles.	MIL-STD-750D METHOD-1051
Forward Surge	1.0ms square-wave, one surge.	MIL-STD-750D METHOD-4066-2
Humidity	At T _A =85°C, RH=85% for 1000hrs.	MIL-STD-750D METHOD-1021
High Temperature Storage Life	At 175°C for 1000hrs.	MIL-STD-750D METHOD-1031

CUSTOMER NOTE:

DISCLAIMER

The product information and the selection guide facilitates the selection of the ALPINESEMI™'s Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review the Data sheet(s) so as to confirm that the Device(s) meets functionality parameters for your application. The information furnished on the Data Sheet and the ALPINESEMI™'s Web Site is believed to be accurate and reliable at the time of preparation of this document. ALPINESEMI™ however, does not assume any inaccuracies that may arise when the components are mounted and removed. Furthermore, ALPINESEMI™ does not assume liability whatsoever, arising out of the application or the use of any of ALPINESEMI™'s product(s). Neither, does it convey any license under its patent rights nor the rights of others. These products are not guaranteed for use in life saving/support appliances or systems. ALPINESEMI™'s customers using these products (either as individual Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and ALPINESEMI™ will not be responsible in any way(s) for any damage(s) resulting from such use.

Please check the website www.alpinesemi.com for continues updates and revision of datasheets.

DESIGN CHANGES: ALPINESEMI™ strives for continuous improvement and reserves the right to change the specifications of its products without prior notice. ALPINESEMI™ reserves the right to discontinue product lines without prior notice. Any product selection is a recommendation based on best understanding of such product(s) by our engineers. However, buyers are advised to rely on their own judgment for such selection of the products.

ALPINESEMI™ makes no warranty, representation or guarantee regarding the suitability of its products for any particular applications. Neither does ALPINESEMI™ assume any liability arising out of the applications nor the use of such products. ALPINESEMI™ specifically disclaims all liabilities either consequential or incidental.

All rights of the product and datasheet are reserved to ALPINESEMI™.

All logos and information provided in the datasheets are for reference only. Any registered and/or trademark/logos belonging to respective companies be the property of those companies. ALPINESEMI™ extends the courtesy to them, if any of the information found in its datasheet.

Component Disposal Instructions

- 1. ALPINESEMI™ Semiconductor Devices are RoHS compliant and hence customers are requested to dispose as per the prevailing Environmental Legislation put forth in their specific country.
- 2. In Europe, please dispose as per EU Directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE).

sales@alpinesemi.com www.alpinesemi.com