

beyond boundaries...

15.0A 650V N-CHANNEL PLANAR POWER MOSFET

DESCRIPTION:

The ALPPRPW15N65 is a 15.0A, 650V N-Channel Planar Power MOSFET and it a new technology for high voltage device in small package with low on resistance and conduction losses.

FEATURES:

- $V_{DS} = 650V, I_{D}=15A$
- \triangleright R_{DS (ON) TYP} ≤ 190mΩ @V_{GS} =10V, I_D = 9.8A
- Optimized for synchronous rectification
- Low input capacitance and low miller capacitance
- Felly characterized capacitance and avalanche
- Lead-free parts meet RoHS requirements
- ➤ Halogen-free (IEC61249-2-21)
- ➤ Suffix "H" indicated Halogen Free part, ex. ALPPRPW15N65H

APPLICATIONS:

- BLDC motor drive applications and synchronous rectifiers applications
- Battery powered circuits
- Resonant mode power supplies

MECHANICAL CHARACTERISTICS

- > Epoxy: UL94-V0 rated flame retardant.
- Case: Molded plastic, TO-247
- Terminals: Solder plated, solderable per MIL-STD-750, Method 2026
- Mounting Position: Any.

ORDERING PART NUMBER

PART NUMBER	ORDERING PART NUMBER
ALPPRPW15N65	ALPPRPW15N65-FM
ALPPRPW15N65H	ALPPRPW15N65H-FM

MAXIMUM RATINGS

MAXIMUM RATINGS @ T_A = 25 °C unless otherwise specified					
PARA	AMETER	SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V_{DS}	650	V	
Gate-Source Voltage		V _{GS} ±30		V	
Continues Dunin Comment (3)	T _C = 25°C		15		
Continues Drain Current (3)	T _C = 125°C	l _D	9	А	
Pulsed Drain Current (1)		I _{DM}	45	А	
Single pulse avalanche energy (2)		E _{AS}	490	mJ	
Power Dissipation T _C = 25°C		P _D	130	W	
Operating Junction Temperature Range		TJ	-55 to +150	°C	
Storage Temperature Range		T _{STG}	-55 to +150	°C	

Note:

- 1. Pulse test: Pulse width \leq 10ms, duty cycle \leq 1%.
- 2. Starting $T_J = 25$ °C, L=20mH, $V_D = 50$ V, $V_{GS} = 10$ V.
- 3. The maximum current rating is package limited.

THERMAL CHARACHTERISTICS @ T_A = 25 °C unless otherwise specified					
PARAMETER SYMBOL RATINGS UNIT					
Thermal Resistance Junction to Ambient	$R_{ heta JA}$	62	°C/W		
Thermal Resistance Junction to Case	$R_{ heta$ JC	0.96	°C/W		

Note:

For surface-mounted devices, both $R_{\theta JA}$ and $R_{\theta JC}$ care measured with the device mounted on approximately 1"x1" FR-4 PCBs. In actual applications, many factors including the PCB material and layout, many affect the thermal resistance of the device-board assembly. For best result, characterize the thermal resistance directly in the application circuit.

ELECTRICAL CHARACTERISTICS @ TA = 25 °C unless otherwise specified

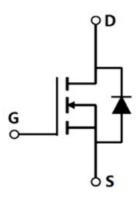
PARAMETER	CONDITIONS	SYMBOL	MIN	TYP.	MAX	UNIT
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage	V _{GS} = 0V, I _D =250 μA	BV _{DSS}	650			٧
	V _{GS} =0V, V _{DS} =650V, T _j =25°C				1	μΑ
Drain-source leakage current	V _{GS} =0V, V _{DS} =650V, T _j =125°C	I _{DSS}			100	
Gate-source leakage current	$V_{GS} = \pm 30V, V_{DS} = 0V$	I _{GSS}			±100	nA
ON CHARACTERISTICS						
Gate-Threshold Voltage	V _{GS} = V _{DS} , I _D = 250μA	V _{GS(TH)}	3.5		4.5	V
Static drain-source on-state resistance	$V_{GS} = 10V, I_D = 9.8A$	R _{DS(ON)}		170	190	mΩ

DYNAMIC PARAMETERS						
PARAMETER	CONDITIONS	SYMBOL	MIN	TYP.	MAX	UNIT
Input Capacitance		Ciss		1700		
Output Capacitance	V _{GS} = 0V, V _{DS} = 100V, f=100MHz	Coss		56		pF
Reserve Transfer Capacitance		C _{rss}		1.5		
Gate resistance	$V_{GS} = 0V, V_{DS} = 0V, f=1.0MHz$	R _g		3.8		Ω
SWITCHING PARAMETERS						
Total Gate Charge		Qg		9.3		
Gate to Source Charge	V _{DS} =480V, I _D =9.8A, V _{GS} =10V	Q_{gs}		13.8		nC
Gate to Drain Charge		Q_{gd}		35.6		
Turn-On Delay Time		t _{d(on)}		21.3		
Rise time	V 400V V 40V L 0.0A B 3O	tr		72.8		C
Turn-Off Delay Time	V_{DS} =480V, V_{GS} =18V, I_{D} =9.8A, R_{GEN} =3 Ω	t _{d(off)}		48.5		nS
Fall time		t _f		18.2		

SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS						
PARAMETER	CONDITIONS	SYMBOL	MIN	TYP.	MAX	UNIT
Drain-source diode forward voltage	V _{GS} =0V, I _F =9.8A	V _{SD}		0.83	1.09	V
Reverse recovery time	V 400V L 6.74 dilde 4004/v-	t _{rr}		284.3		nS
Reverse recovery charge	V _{DD} =400V, I _F =6.7A, di/dt=100A/μs	Qrr		4.25		nC

ALPPRPW15N65

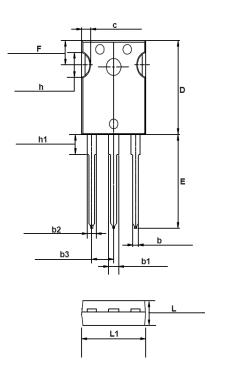
TO-247

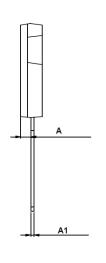

PINNING INFORMATION

SIMPLIFIED OUTLINE

beyond boundaries...

SCHEMATIC DIAGRAM



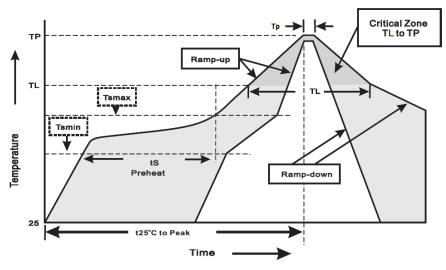


beyond boundaries...

PACKAGE INFORMATION

TO-247

OUTLINE DIMENSIONS					
CVMADOL	MILLIMETERS		INC	HES	
SYMBOL	MIN	MAX	MIN	MAX	
Α	2.20	2.50	0.087	0.098	
A1	0.41	0.79	0.016	0.031	
b	1.00	1.40	0.039	0.055	
b1	2.87	3.22	0.113	0.127	
b2	1.90	2.39	0.075	0.094	
b3	5.44	BSC.	0.214 BSC.		
С	4.32	5.49	0.170	0.205	
D	20.80	21.20	0.819	0.835	
Е	19.70	20.32	0.776	0.800	
F	5.80	Тур.	0.228	3 Тур.	
h	4.32	5.49	0.189	0.205	
h1	4.00	4.40	0.157	0.173	
L	4.80	5.21	0.189	0.205	
L1	15.50	16.13	0.610	0.635	



beyond boundaries...

SOLDERING PARAMETERS

SUGGESTED THERMAL PROFILES FOR SOLDERING PROCESSES

- 1. Storage environment: Temperature=5 °C~40 °C Humidity=55% ±25%
- 2. Reflow soldering of surface-mount devices

3. Reflow soldering

PROFILE FEATURE	SOLDERING CONDITION
Average ramp-up rate (T _L to T _P)	<3 °C/sec
Preheat	
- Temperature Min (T _{smin})	150 °C
- Temperature Max (T _{smax})	200 °C
- Time (min to max) (ts)	60 ~ 120 sec
T _{smax} to T _L	
- Ramp-upRate	<3 °C/sec
Time maintained above:	
- Temperature (T _L)	217 °C
- Time(tL)	60 ~ 260 sec
Peak Temperature (T _P)	255 °C-0/+5 °C
Time within 5 °C of actual Peak	10 ~ 30 sec
Temperature(tP)	
Ramp-down Rate	<3 °C/sec
Time 25 °C to Peak Temperature	<6 minutes

ALPPRPW15N65

TO-247

CUSTOMER NOTE:

DISCLAIMER

The product information and the selection guide facilitates the selection of the ALPINESEMI™'s Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review the Data sheet(s) so as to confirm that the Device(s) meets functionality parameters for your application. The information furnished on the Data Sheet and the ALPINESEMI™'s Web Site is believed to be accurate and reliable at the time of preparation of this document. ALPINESEMI™ however, does not assume any inaccuracies that may arise when the components are mounted and removed. Furthermore, ALPINESEMI™ does not assume liability whatsoever, arising out of the application or the use of any of ALPINESEMI™'s product(s). Neither, does it convey any license under its patent rights nor the rights of others. These products are not guaranteed for use in life saving/support appliances or systems. ALPINESEMI™'s customers using these products (either as individual Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and ALPINESEMI™ will not be responsible in any way(s) for any damage(s) resulting from such use.

Please check the website www.alpinesemi.com for continues updates and revision of datasheets.

DESIGN CHANGES: ALPINESEMI™ strives for continuous improvement and reserves the right to change the specifications of its products without prior notice. ALPINESEMI™ reserves the right to discontinue product lines without prior notice. Any product selection is a recommendation based on best understanding of such product(s) by our engineers. However, buyers are advised to rely on their own judgment for such selection of the products.

ALPINESEMI™ makes no warranty, representation or guarantee regarding the suitability of its products for any particular applications. Neither does ALPINESEMI™ assume any liability arising out of the applications nor the use of such products. ALPINESEMI™ specifically disclaims all liabilities either consequential or incidental.

All rights of the product and datasheet are reserved to ALPINESEMI™.

All logos and information provided in the datasheets are for reference only. Any registered and/or trademark/logos belonging to respective companies be the property of those companies. ALPINESEMI™ extends the courtesy to them, if any of the information found in its datasheet.

Component Disposal Instructions

- 1. ALPINESEMI™ Semiconductor Devices are RoHS compliant and hence customers are requested to dispose as per the prevailing Environmental Legislation put forth in their specific country.
- 2. In Europe, please dispose as per EU Directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE).

sales@alpinesemi.com www.alpinesemi.com