

18A, 500V N-CHANNEL POWER MOSFET

DESCRIPTION:

The ALPP18N50FA is an 18A, 500V N-Channel Power MOSFET and it has High Speed Power Switching.

FEATURES:

- $ightharpoonup R_{DS (ON)} = 280 m\Omega @V_{GS} = 10 V, I_{D (MAX)} = 18 A, V_{DS} = 500 V$
- Fast Switching
- Enhanced Body diode dv/dt capability
- Enhanced Avalanche Ruggedness
- > RoHS compliant & halogen-free.
- Suffix "-H" indicated Halogen Free part, ex. ALPP18N50FA-H

APPLICATIONS:

- Load Switch.
- > PWM Application.
- Power Management.

MECHANICAL CHARACTERISTICS

- Epoxy: UL94-V0 rated flame retardant.
- Case: Molded plastic, TO-220F
- Terminals: Solder plated, solderable per MIL-STD-750, Method 2026
- Mounting Position: Any.

MAXIMUM RATINGS

MAXIMUM RATINGS @ T_A = 25 °C unless otherwise specified (Note 1)					
PARAMETER	SYMBOL	RATINGS	UNIT		
Drain-Source Voltage	V_{DS}	500	V		
Gate-Source Voltage	V_{GS}	±30	V		
Continues Drain Current (DC)	I _D	18	А		
Pulsed Drain Current PW≤300μs	I _{DP}	72	А		
Single pulse avalanche energy	E _{AS}	1711	mJ		
Power Dissipation	P _D	55	W		
Junction Temperature	TJ	150	°C		
Storage Temperature Range	T_{STG}	-55 to +150	°C		

Note:

1. Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACHTERISTICS @ T_A = 25 °C unless otherwise specified (Note 2)						
PARAMETER SYMBOL RATINGS UNIT						
Thermal Resistance Junction to Ambient	$R_{ hetaJA}$	62.5	°C/W			
Thermal Resistance Junction to Case	$R_{ heta JC}$	2.5	°C/W			

Note:

2. When mounted on 1-inch square copper board $t \le 10$ sec the value in any given application depends on the user's specific board design.

ELECTRICAL CHARACTERISTICS @ TA = 25 °C unless otherwise specified (NOTI	ELECTRICAL CHARACTERIST	CS @ TA = 25 °C unless	otherwise specified (NOTE)
--	--------------------------------	------------------------	----------------------------

PARAMETER	CONDITIONS	SYMBOL	MIN	TYP.	MAX	UNIT
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage	V _{GS} = 0V, I _D =250 μA	V _{(BR)DSS}	500			V
Zero Gate Voltage Drain Current	V _{GS} =0V, V _{DS} =500V, T _j =25°C	I _{DSS}			100	μΑ
Gate-source leakage current	V _{GS} = ±30V	I _{GSS}			±100	nA
ON CHARACTERISTICS						
Gate-Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 250 \mu A$	V _{GS(TH)}	2.0	3.0	4.0	V
Static Drain-to-Source On- Resistance	V _{GS} = 10V, I _D = 9A	R _{DS(ON)}		0.28	0.36	Ω

SWITCHING PARAMETERS						
PARAMETER	CONDITIONS	SYMBOL	MIN	TYP.	MAX	UNIT
Input Capacitance		Ciss		2740		
Output Capacitance	V _{GS} = 0V, V _{DS} = 250V, f=1MHz	Coss		214		pF
Reserve Transfer Capacitance		Crss		15		
Total Gate Charge		Qg		71		
Gate to Source Charge	V _{DS} =400V, I _D =18A, V _{GS} =10V	Qgs		10		nC
Gate to Drain Charge		Q_{gd}		32		
Turn-On Delay Time		t _{d(on)}		35		
Rise time	V 250V L 10A D 25O	t _r		50		».C
Turn-Off Delay Time	V_{DS} =250V, I_{D} =18A, R_{GEN} =25 Ω	t _{d(off)}		160		nS
Fall time		t _f		65		

SOURCE-DRAIN DIODE RATING	S AND CHARACTERISTICS					
PARAMETER	CONDITIONS	SYMBOL	MIN	TYP.	MAX	UNIT
Drain forward voltage	V _{GS} = 0V, I _{SD} = 18A	V_{FSD}	0.5	0.8	1.0	V

Note 3: Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

beyond boundaries...

TO-220F

TYPICAL DEVICE RATING AND CHARACTERISTICS CURVES (TA = 25 °C unless otherwise noted)

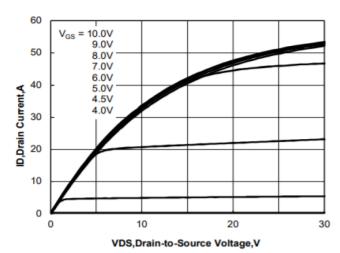


Fig.1 OUTPUT CHARACTERISTICS



Fig.2 TRANSFER CHARACTERISTICS

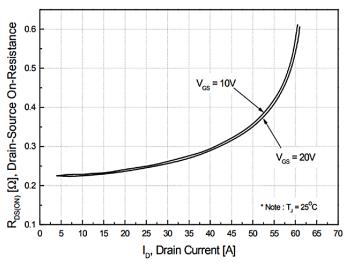


Fig.3 R_{dson} Vs. DRAIN CURRENT

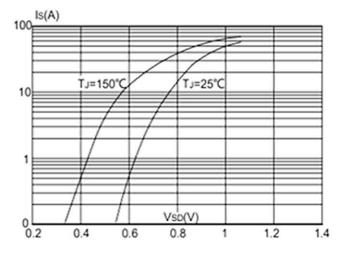
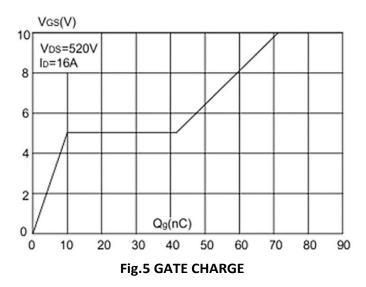
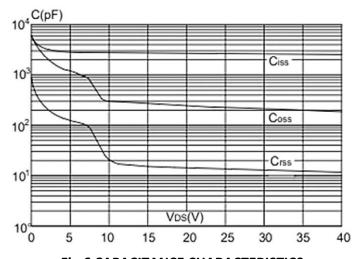




Fig.4 BODY DIODE CHARACTERISTIC

beyond boundaries...

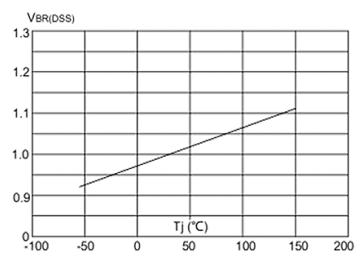


Fig.7 NORMALIZED BREAKDOWN VOLTAGE VS.
JUNCTION TEMPERATURE

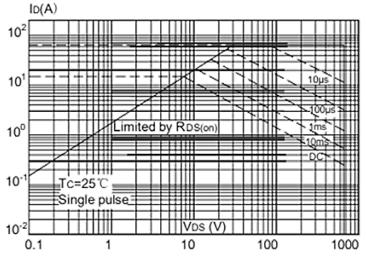


Fig.9 MAXIMUM SAFE OPERATING AREA

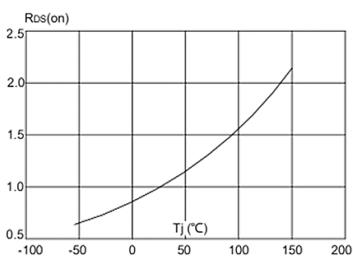


Fig.8 NORMALIZED ON RESISTANCE VS.
JUNCTION TEMPERATURE

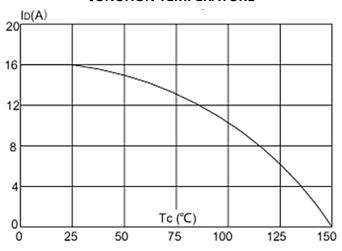


Fig. 10 MAXIMUM CONTINUOUS DRAIN CURRENT VS. CASE TEMPERATURE

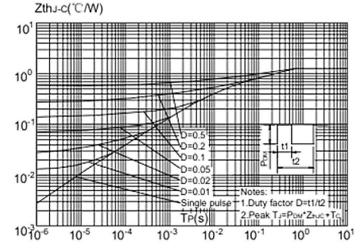
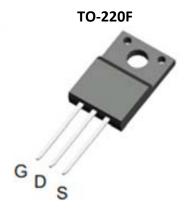
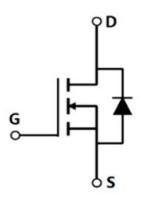


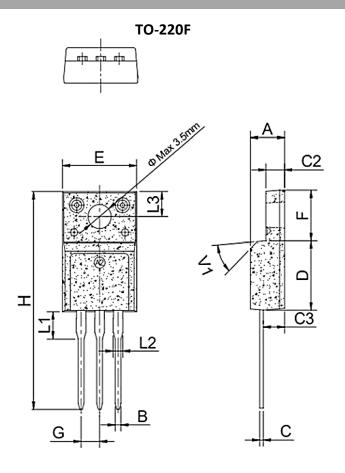
Fig.11 MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE



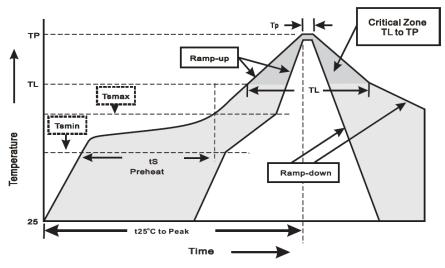


PINNING INFORMATION

SIMPLIFIED OUTLINE


SCHEMATIC DIAGRAM

PACKAGE INFORMATION



OUTLINE DIMENSIONS						
SYMBOL	MILLIMETERS					
STIVIBUL	MIN	NOM	MAX	MIN	NOM	MAX
Α	4.50	-	4.90	0.177	-	0.193
В	0.74	0.80	0.83	0.029	0.031	0.033
С	0.47	-	0.65	0.019	-	0.026
C2	2.45	-	2.75	0.096	-	0.108
C3	2.60	-	3.00	0.102	-	0.118
D	8.80	-	9.30	0.346	-	0.366
Е	9.80	-	10.40	0.386	-	0.410
F	6.40	-	6.80	0.252	-	0.268
G	-	2.54	ı	-	0.100	-
Н	28.00	-	29.80	1.102	-	1.173
L1	-	3.63	-	-	0.143	-
L2	1.14	-	1.70	0.045	-	0.067
L3	-	3.30	-	-	0.130	-
V1	-	45°	-	-	45°	-

SOLDERING PARAMETERS

SUGGESTED THERMAL PROFILES FOR SOLDERING PROCESSES

- 1. Storage environment: Temperature=5 °C~40 °C Humidity=55% ±25%
- 2. Reflow soldering of surface-mount devices

3. Reflow soldering

PROFILE FEATURE	SOLDERING CONDITION
Average ramp-up rate (T _L to T _P)	<3 °C/sec
Preheat	
- Temperature Min (T _{smin})	150 °C
- Temperature Max (T _{smax})	200 °C
- Time (min to max) (t₅)	60 ~ 120 sec
T _{smax} to T _L	
- Ramp-upRate	<3 °C/sec
Time maintained above:	
- Temperature (T _L)	217 °C
- Time(tL)	60 ~ 260 sec
Peak Temperature (T _P)	255 °C-0/+5 °C
Time within 5 °C of actual Peak	10 ~ 30 sec
Temperature(tP)	
Ramp-down Rate	<3 °C/sec
Time 25 °C to Peak Temperature	<6 minutes

CUSTOMER NOTE:

DISCLAIMER

The product information and the selection guide facilitates the selection of the ALPINESEMI™'s Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review the Data sheet(s) so as to confirm that the Device(s) meets functionality parameters for your application. The information furnished on the Data Sheet and the ALPINESEMI™'s Web Site is believed to be accurate and reliable at the time of preparation of this document. ALPINESEMI™ however, does not assume any inaccuracies that may arise when the components are mounted and removed. Furthermore, ALPINESEMI™ does not assume liability whatsoever, arising out of the application or the use of any of ALPINESEMI™'s product(s). Neither, does it convey any license under its patent rights nor the rights of others. These products are not guaranteed for use in life saving/support appliances or systems. ALPINESEMI™'s customers using these products (either as individual Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and ALPINESEMI™ will not be responsible in any way(s) for any damage(s) resulting from such use.

Please check the website www.alpinesemi.com for continues updates and revision of datasheets.

DESIGN CHANGES: ALPINESEMI™ strives for continuous improvement and reserves the right to change the specifications of its products without prior notice. ALPINESEMI™ reserves the right to discontinue product lines without prior notice. Any product selection is a recommendation based on best understanding of such product(s) by our engineers. However, buyers are advised to rely on their own judgment for such selection of the products.

ALPINESEMI™ makes no warranty, representation or guarantee regarding the suitability of its products for any particular applications. Neither does ALPINESEMI™ assume any liability arising out of the applications nor the use of such products. ALPINESEMI™ specifically disclaims all liabilities either consequential or incidental.

All rights of the product and datasheet are reserved to ALPINESEMI™.

All logos and information provided in the datasheets are for reference only. Any registered and/or trademark/logos belonging to respective companies be the property of those companies. ALPINESEMI™ extends the courtesy to them, if any of the information found in its datasheet.

Component Disposal Instructions

- 1. ALPINESEMI™ Semiconductor Devices are RoHS compliant and hence customers are requested to dispose as per the prevailing Environmental Legislation put forth in their specific country.
- 2. In Europe, please dispose as per EU Directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE).

sales@alpinesemi.com www.alpinesemi.com