

120V N-CHANNEL ENHANCEMENT MODE MOSFET

DESCRIPTION:

The ALPB195N12 is an 195A, 120V N-Channel Enhancement Mode MOSFET and it uses super trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge.

It can be used in a wide variety of applications. The package form is TO-220, which accords with the ROHS standard and Halogen Free standard.

FEATURES:

- ho R_{DS (ON) typ} = 3.3m Ω @V_{GS} = 10V, I_D = 195A, V_{DS} = 120V
- High Speed Power Switching
- Enhanced Avalanche Ruggedness
- RoHS compliant & halogen-free
- ➤ Suffix "-H" indicated Halogen Free part, ex. ALPB195N12H

APPLICATIONS:

- Power Management
- Portable Equipment
- DC- DC Converter

MECHANICAL CHARACTERISTICS

- > Epoxy: UL94-V0 rated flame retardant.
- Case: Molded plastic, TO-220
- Terminals: Solder plated, solderable per MIL-STD-750, Method 2026
- Mounting Position: Any.

ORDERING PART NUMBER

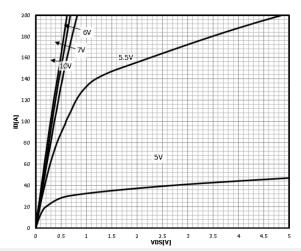
PART NUMBER	ORDERING PART NUMBER
ALPB195N12	ALPB195N12-LT

MAXIMUM RATINGS

MAXIMUM RATINGS @ T _A = 25 °C unless otherwise specified					
PARAMETE	SYMBOL	RATINGS	UNIT		
Drain-Source Voltage		$V_{ extsf{DSS}}$	120	V	
Gate-Source Voltage		V_{GS}	±20	V	
@T _C =25°C			195	^	
Continuous Drain Current	@T _C =100°C	l _D	125	A	
Pulsed Drain Current	I _{DM} (note 1)	780	А		
Single pulse avalanche energy $V_{DD} = 100V$, Rg=25 Ω , L=5mH, @T _C =25 $^{\circ}$ C		E _{AS}	2300	mJ	
Power Dissipation @T _C =25°C		P _D	250	W	
Operating Junction Temperature Ra	TJ	-55 to +150	°C		
Storage Temperature Range		T _{STG}	-55 to +150	°C	
Maximum Temperature for Soldering		T∟	260	°C	
Note: 1. Repetitive rating; pulse width limited by maximum junction temperature.					

THERMAL CHARACHTERISTICS @ T_A = 25 °C unless otherwise specified						
PARAMETER SYMBOL RATINGS UNIT						
Thermal Resistance Junction to Ambient	$R_{ hetaJA}$	60	°C/W			
Thermal Resistance Junction to Case	$R_{ heta$ JC	0.5	°C/W			

ELECTRICAL CHARACTERISTICS @ TA = 25 °C unless otherwise specified


PARAMETER	CONDITIONS	SYMBOL	MIN	TYP.	MAX	UNIT
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage	V _{GS} = 0V, I _D =250 μA	$V_{(BR)DSS}$	120			V
Drain to Source Leakage Current	V _{GS} =0V, V _{DS} =120V, T _j =25°C	I _{DSS}			1.0	μΑ
Gate to Source Forward Leakage current	V _{GS} = +20V	I _{GSS(F)}			100	nA
Gate to Source Reverse Leakage current	V _{GS} = -20V	I _{GSS(R)}			-100	nA
ON CHARACTERISTICS						
Gate-Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	V _{GS(TH)}	2.8	3.0	3.8	٧
Drain-to-Source On-Resistance	V _{GS} = 10V, I _D = 20A	R _{DS(ON)}		2.95	3.3	mΩ
Gate Resistance	V _{GS} =0V, V _{DS} =60V, f=1MHz	R_{G}		1.06		Ω

SWITCHING PARAMETERS						
PARAMETER	CONDITIONS	SYMBOL	MIN	TYP.	MAX	UNIT
Input Capacitance		C _{iss}		7980		
Output Capacitance	$V_{GS} = 0V, V_{DS} = 60V, f=1MHz$	Coss		871		pF
Reserve Transfer Capacitance		C _{rss}		21.6		
Total Gate Charge		$Q_{\rm g}$		113		
Gate to Source Charge	V_{DS} =60V, I_{D} =5A, V_{GS} =0 ~ 10V	Q_{gs}		33		nC
Gate to Drain Charge		Q_{gd}		23		
Turn-On Delay Time		t _{d(on)}		30		
Rise time	V -60V I -20A V -10V B -FO	t _r		25		nS
Turn-Off Delay Time	V_{DS} =60V, I_{D} =20A, V_{GS} =10V, R_{G} =5 Ω	t _{d(off)}		75		113
Fall time		t _f		30		

SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS							
PARAMETER	CONDITIONS	SYMBOL	MIN	TYP.	MAX	UNIT	
Drain forward current	T _C =25°C	Is			195	Α	
Drain forward voltage	V _{GS} = 0V, I _S = 20A	V _{SD}			1.2	V	
Reverse recovery time	V _{DS} =60V, I _S =100A,	t _{rr}		100		ns	
Reverse recovery charge	dI _F /dt=100A/μs	Qrr		260		nC	

TYPICAL DEVICE RATING AND CHARACTERISTICS CURVES (TA = 25 °C unless otherwise noted)

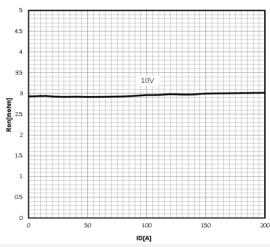


Fig.1 TYPICAL OUTPUT CHARACTERISTICS $I_D=f(V_{DS})$

Fig.2 TYP. DRAIN DRAIN-SOURCE ON RESISTANCE $R_{DS(on)}=f(I_D)$

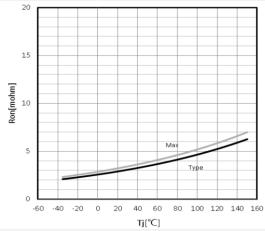


Fig.3 TYP. TRANSFER CHARACTERISTICS $I_D=f(V_{GS})$

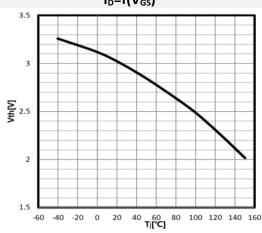


Fig.4 DRAIN-SOURCE ON ON-STATE RESISTANCE $R_{DS(on)}=f(T_j); I_D=20A; V_{GS}=10V$

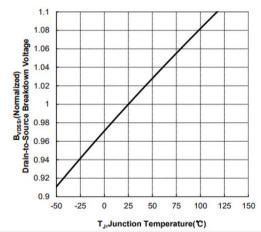
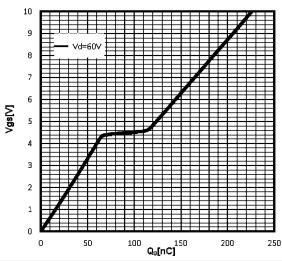



Fig.5 GATE THRESHOLD VOLTAGE V_{TH} =f(T_j); I_D =250 μ A

Fig.6 DRAIN SOURCE BREAKDOWN VOLTAGE $V_{BR(DSS)}=f(T_i)$; $I_D=250\mu A$

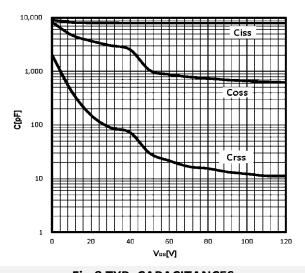


Fig.7 TYP. GATE CHARGE V_{GS} =f(Q_{gate})

300 250 200 200 100 50 0 25 50 75 100 125 150 Tc (°C)

Fig.8 TYP. CAPACITANCES C=f(V_{DS}); V_{GS}=0V; f=1MHz

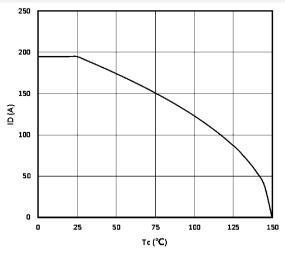


Fig.9 Power Dissipation Ptot=f(Tj)

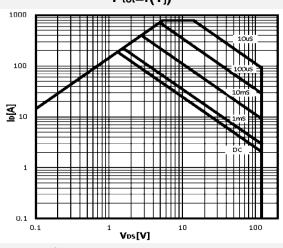


Fig.10 MAXIMUM DRAIN CURRENT $I_D=f(T_C)$

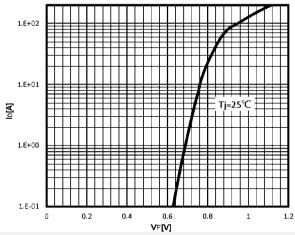
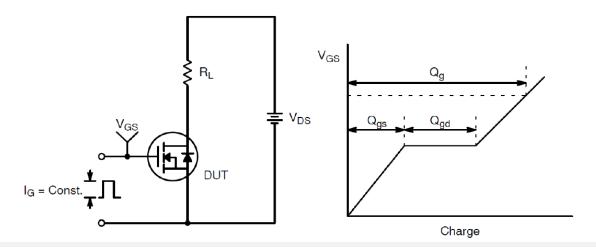
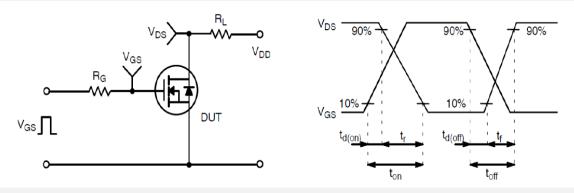
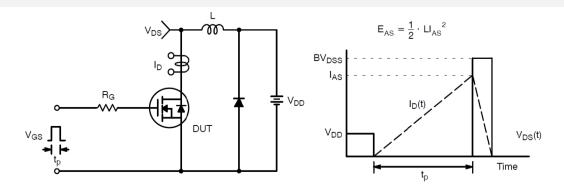


Fig.11 SAFE OPERATING AREA $I_D=f(V_{DS})$


Fig.12 BODY DIODE FORWARD VOLTAGE VARIATION $I_F=f(V_{GS})$

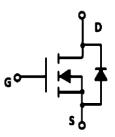

 $\it t_{\rm p}$ [s] Fig.13 MAX. TRANSIENT THERMAL IMPEDANCE $\it Z_{thJC} = f(t_{\rm p})$


TEST RESULTS CURVES (T_A = 25 °C unless otherwise noted)

GATE CHARGE TEST CIRCUIT & WAVEFORM

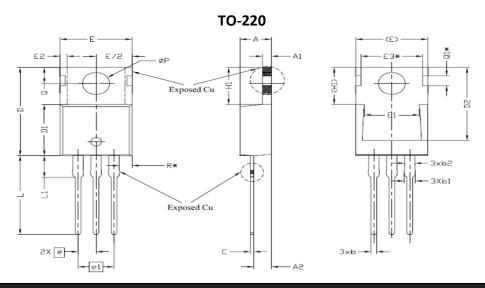
RESISTIVE SWITCHING TEST CIRCUIT & WAVEFORMS

UNCLAMPED INDUCTIVE SWITCHING TEST CIRCUIT & WAVEFORMS

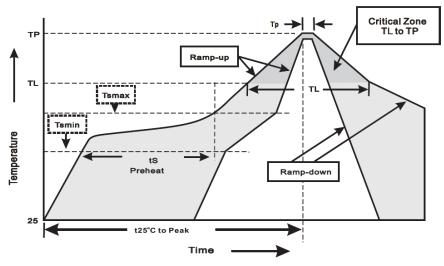


PINNING INFORMATION

SIMPLIFIED OUTLINE


SYMBOL

PACKAGE INFORMATION


OUTLINE DIMENSIONS						
SYMBOL	MILLIMETERS			INCHES		
STIVIBOL	MIN	NOM	MAX	MIN	NOM	MAX
Α	4.24	4.44	4.64	0.167	0.175	0.183
A1	1.15	1.27	1.40	0.045	0.050	0.055
A2	2.30	2.48	2.70	0.091	0.098	0.106
b	0.70	0.80	0.90	0.028	0.031	0.035
b1	1.20	1.55	1.75	0.047	0.061	0.069
b2	1.20	1.45	1.70	0.047	0.057	0.067
С	0.40	0.50	0.60	0.016	0.020	0.024
D	14.70	15.37	16.00	0.579	0.605	0.630
D1	8.82	8.92	9.02	0.347	0.351	0.355
D2	12.63	12.73	12.83	0.497	0.501	0.505
Е	9.96	10.16	10.36	0.392	0.400	0.408
E1	6.86	7.77	8.89	0.270	0.306	0.350
E2	-	-	0.76	-	-	0.030
E3*	8.70 REF.				0.343 REF.	
е	2.54 REF.			0.100 REF.		
e1		5.08 REF.			0.200 REF.	
H1	6.30	6.45	6.60	0.248	0.254	0.260
L	13.47	13.72	13.97	0.530	0.540	0.550
L1	3.60	3.80	4.00	0.142	0.150	0.157
ФР	3.75	3.84	3.93	0.148	0.151	0.155
Q	2.60	2.80	3.00	0.102	0.110	0.118
Q1*	1.73 REF. 0.068 REF.					
R*	1.82 REF.				0.072 REF.	

SOLDERING PARAMETERS

SUGGESTED THERMAL PROFILES FOR SOLDERING PROCESSES

- 1. Storage environment: Temperature=5 °C~40 °C Humidity=55% ±25%
- 2. Reflow soldering of surface-mount devices

3. Reflow soldering

PROFILE FEATURE	SOLDERING CONDITION
Average ramp-up rate (T _L to T _P)	<3 °C/sec
Preheat	
- Temperature Min (T _{smin})	150 °C
- Temperature Max (T _{smax})	200 °C
- Time (min to max) (t₅)	60 ~ 120 sec
T _{smax} to T _L	
- Ramp-upRate	<3 °C/sec
Time maintained above:	
- Temperature (T _L)	217 °C
- Time(tL)	60 ~ 260 sec
Peak Temperature (T _P)	255 °C-0/+5 °C
Time within 5 °C of actual Peak	10 ~ 30 sec
Temperature(tP)	
Ramp-down Rate	<3 °C/sec
Time 25 °C to Peak Temperature	<6 minutes

CUSTOMER NOTE:

DISCLAIMER

The product information and the selection guide facilitates the selection of the ALPINESEMI™'s Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review the Data sheet(s) so as to confirm that the Device(s) meets functionality parameters for your application. The information furnished on the Data Sheet and the ALPINESEMI™'s Web Site is believed to be accurate and reliable at the time of preparation of this document. ALPINESEMI™ however, does not assume any inaccuracies that may arise when the components are mounted and removed. Furthermore, ALPINESEMI™ does not assume liability whatsoever, arising out of the application or the use of any of ALPINESEMI™'s product(s). Neither, does it convey any license under its patent rights nor the rights of others. These products are not guaranteed for use in life saving/support appliances or systems. ALPINESEMI™'s customers using these products (either as individual Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and ALPINESEMI™ will not be responsible in any way(s) for any damage(s) resulting from such use.

Please check the website www.alpinesemi.com for continues updates and revision of datasheets.

DESIGN CHANGES: ALPINESEMI™ strives for continuous improvement and reserves the right to change the specifications of its products without prior notice. ALPINESEMI™ reserves the right to discontinue product lines without prior notice. Any product selection is a recommendation based on best understanding of such product(s) by our engineers. However, buyers are advised to rely on their own judgment for such selection of the products.

ALPINESEMI™ makes no warranty, representation or guarantee regarding the suitability of its products for any particular applications. Neither does ALPINESEMI™ assume any liability arising out of the applications nor the use of such products. ALPINESEMI™ specifically disclaims all liabilities either consequential or incidental.

All rights of the product and datasheet are reserved to ALPINESEMI™.

All logos and information provided in the datasheets are for reference only. Any registered and/or trademark/logos belonging to respective companies be the property of those companies. ALPINESEMI™ extends the courtesy to them, if any of the information found in its datasheet.

Component Disposal Instructions

- 1. ALPINESEMI™ Semiconductor Devices are RoHS compliant and hence customers are requested to dispose as per the prevailing Environmental Legislation put forth in their specific country.
- 2. In Europe, please dispose as per EU Directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE).

sales@alpinesemi.com www.alpinesemi.com