

40A, 150V N-CHANNEL ENHANCED MODE POWER MOSFET

DESCRIPTION:

The ALP40N15S is an 40A, 150V N-Channel Enhanced Mode Power MOSFET and it has high density cell design for ultra low $R_{DS(on)}$

FEATURES:

- $V_{(BR)DSS} = 150V$, $I_D = 40A$
- $R_{DS(ON)MAX} = 45 m\Omega$ @ $V_{GS} = 10V$, $I_D = 40A$.
- High density cell design for ultra-low R_{DS(on)}.
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high EAS
- Excellent package for good heat dissipation
- Suffix "-H" indicated Halogen Free part, ex. ALP40N15S-H

APPLICATIONS:

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply.

MECHANICAL CHARACTERISTICS

Case: Molded plastic, TO-252AB

Mounting Position: Any.

MAXIMUM RATINGS

MAXIMUM RATINGS @ T _A = 25 °C unless otherwise specified						
PARAMETER SYMBOL RATINGS UNIT						
Drain-Source Voltage	V_{DS}	150	V			
Gate-Source Voltage	V_{GS}	±20	V			
Continuous Drain Current	I _D	40	А			
Pulsed Drain Current	I _{DM}	160	А			
Power Dissipation	P_{D}	140	W			
Thermal Resistance Junction to Case	$R_{ heta$ JC	1.07	°C/W			
Single pulse avalanche energy	E _{AS}	310	mJ			
Operating Junction Temperature	Tı	+150	°C			
Storage Temperature Range	T _{STG}	-55 to +150	°C			

beyond boundaries...

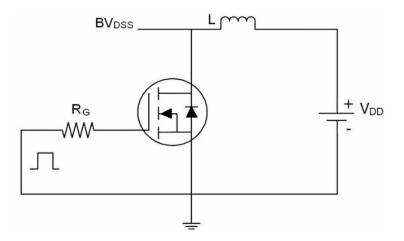
ELECTRICAL CHARACTERISTICS @ TA = 25 °C unless otherwise specified

PARAMETER	CONDITIONS	SYMBOL	MIN	TYP.	MAX	UNIT
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250 μA	V _{(BR)DSS}	150			V
Zero gate voltage drain current	V _{DS} =150V, V _{GS} =0V	I _{DSS}			1.0	μΑ
Gate-body leakage current	V _{GS} = ±20V, V _{DS} = 0V	I _{GSS}			±100	nA
ON CHARACTERISTICS						
Gate-Threshold Voltage	$V_{DS} = V_{GS}$, $I_{D} = 250 \mu A$	$V_{GS(th)}$	2.5		4.5	V
Drain-to-Source On-Resistance (Note 1)	V _{GS} = 10V, I _D = 18A	R _{DS(ON)}		35	45	mΩ
Forward transconductance (Note 1)	V _{DS} =15V, I _D =18A	G FS	38			S

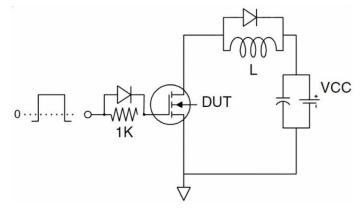
DYNAMIC CHARACTERISTICS (Note 2)						
PARAMETER	CONDITIONS	SYMBOL	MIN	TYP.	MAX	UNIT
Input Capacitance	$V_{DS} = 25V$, $V_{GS} = 0V$, $F_{req} = 1.0$ MHz	C _{iss}		4200		pF
Output Capacitance	$V_{DS} = 25V$, $V_{GS} = 0V$, $F_{req} = 1.0$ MHz	Coss		203		pF
Reserve Transfer Capacitance	$V_{DS} = 25V$, $V_{GS} = 0V$, $F_{req} = 1.0$ MHz	C_{rss}		96		pF

SWITCHING CHARACTERISTICS						
PARAMETER	CONDITIONS SYMBOL MIN		TYP.	MAX	UNIT	
Total Gate Charge	$V_{DS} = 30V$, $V_{GS} = 10V$, $I_D = 30A$	Qg		105		nC
Gate to Source Charge	$V_{DS} = 30V, V_{GS} = 10V, I_D = 30A$	Q_{gs}		21		nC
Gate to Drain Charge	$V_{DS} = 30V$, $V_{GS} = 10V$, $I_D = 30A$	Q_{gd}		31.5		nC
Turn-On Delay Time	$V_{DD} = 30V, V_{GS} = 10V, I_D = 2A,$ $R_L = 15\Omega, R_{GEN} = 2.5\Omega$	t _{d(on)}		17.8		nS
Turn-On Rise time	$V_{DD} = 30V, V_{GS} = 10V, I_D = 2A,$ $R_L = 15\Omega, R_{GEN} = 2.5\Omega$	tr		11.8		nS
Turn-Off Delay Time	$V_{DD} = 30V, V_{GS} = 10V, I_D = 2A,$ $R_L = 15\Omega, R_{GEN} = 2.5\Omega$	t _{d(off)}		56		nS
Turn-Off Fall time	$V_{DD} = 30V, V_{GS} = 10V, I_D = 2A,$ $R_L = 15\Omega, R_{GEN} = 2.5\Omega$	t _f		14.6		nS

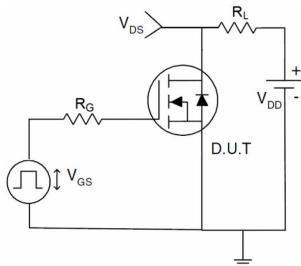
SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS						
PARAMETER CONDITIONS			MIN	TYP.	MAX	UNIT
Diode forward Current (Note 1)		Is			40	Α
Diode forward Voltage	$I_S = 18A$, $V_{GS} = 0V$	V_{DS}			1.2	V
Reverse recovery time	$T_J = 25$ °C, $I_F = 18A$, $di/dt = 100A/\mu s$ (Note 1)	t _{rr}		70		nS
Reverse recovery charge	$T_J = 25$ °C, $I_F = 18A$, di/dt =100A/ μ s (Note 1)	Q _{rr}		230		nC


Note:

- 1. Pulse test (pulse width \leq 300 μ s, Duty cycle \leq 2%.
- 2. Guaranteed by design, not subject to production testing.



TEST CIRCUIT


1) EAS TEST CIRCUIT

2) GATE CHARGE TEST CIRCUIT

3) SWITCH TIME TEST CIRCUIT

TYPICAL DEVICE RATING AND CHARACTERISTICS CURVES (T_A = 25 °C unless otherwise noted)

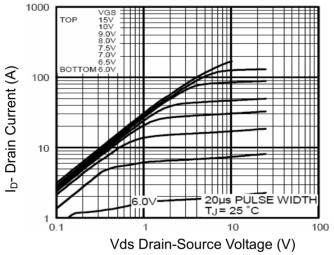


Fig.1 OUTPUT CHARACTERISTICS

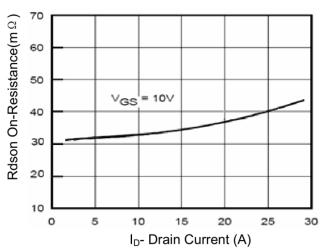
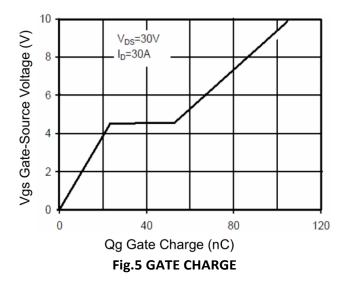



Fig.3 R_{DS(on)} – DRAIN CURRENT

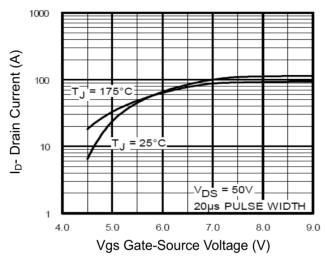


Fig.2 TRANSFER CHARACTERISTICS

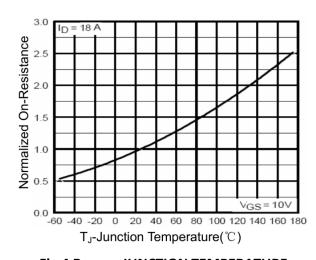


Fig.4 R_{DS(on)} – JUNCTION TEMPERATURE

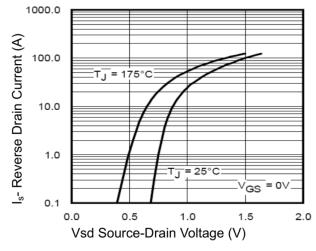


Fig. 6 SOURCE - DRIAN DIODE FORWARD

beyond boundaries...

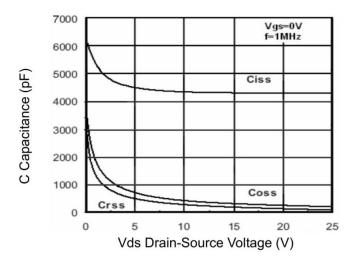


Fig.7 CAPACITANCE vs V_{DS}

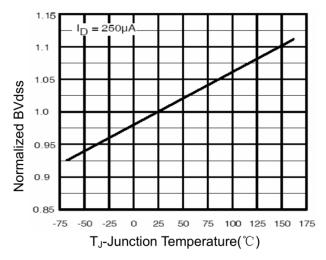
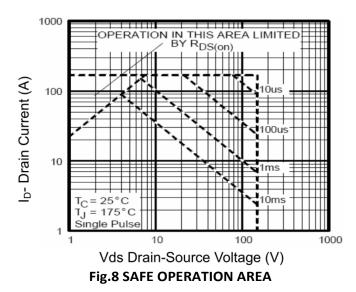



Fig.9 BV_{DSS} vs JUNCTION TEMPERATURE

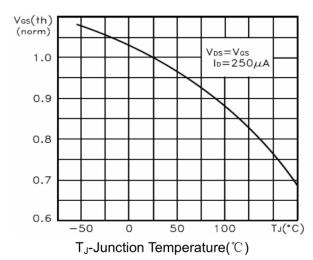
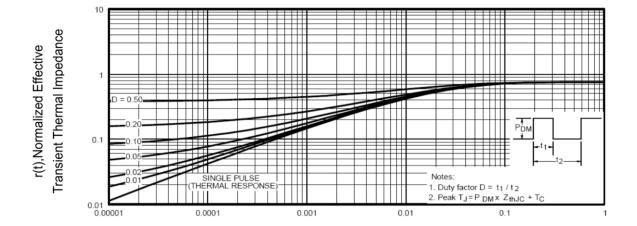
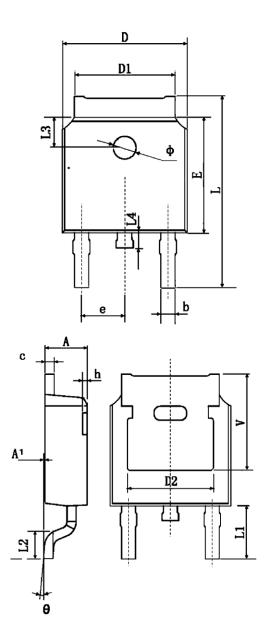



Fig. 10 V_{GS(th)} vs JUNCTION TEMPERATURE

Square Wave Pluse Duration(sec)

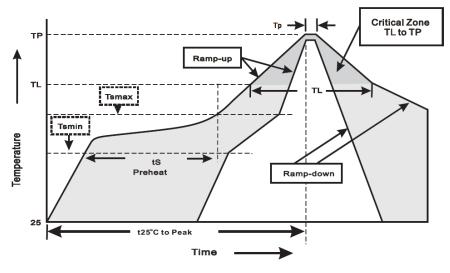
Fig.11 NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE


PINNING INFORMATION

PIN	SIMPLIFIED OUTLINE	CIRCUIT DIAGRAM
S Source G Gate D Drain		G

PACKAGE INFORMATION

TO-252AB


OUTLINE DIMENSIONS					
	MILLIMETERS		INCH	IES	
SYMBOL	MIN	MAX	MIN	MAX	
Α	2.200	2.400	0.087	0.094	
A1	0.000	0.127	0.000	0.005	
b	0.660	0.860	0.026	0.034	
С	0.460	0.580	0.018	0.023	
D	6.500	6.700	0.256	0.264	
D1	5.100	5.460	0.201	0.215	
D2	4.83	0 TYP.	0.190	TYP.	
E	6.000	6.200	0.236	0.244	
е	2.186	2.386	0.086	0.094	
L	9.800	10.400	0.386	0.409	
L1	2.90	0 TYP.	0.114	TYP.	
L2	1.400	1.700	0.055	0.067	
L3	1.60	0 TYP.	0.063	TYP.	
L4	0.600	1.000	0.024	0.039	
φ	1.100	1.300	0.043	0.051	
θ	0°	8°	0°	8°	
h	0.000	0.300	0.000	0.012	
V	5.350 TYP.		0.211	TYP.	

SOLDERING PARAMETERS

SUGGESTED THERMAL PROFILES FOR SOLDERING PROCESSES

- 1. Storage environment: Temperature=5 °C~40 °C Humidity=55% ±25%
- 2. Reflow soldering of surface-mount devices

3. Reflow soldering

PROFILE FEATURE	SOLDERING CONDITION
Average ramp-up rate (T _L to T _P)	<3 °C/sec
Preheat	
- Temperature Min (T _{smin})	150 °C
- Temperature Max (T _{smax})	200 °C
- Time (min to max) (t _s)	60 ~ 120 sec
T _{smax} to T _L	
- Ramp-upRate	<3 °C/sec
Time maintained above:	
- Temperature (T _L)	217 °C
- Time(tL)	60 ~ 260 sec
Peak Temperature (T _P)	255 °C-0/+5 °C
Time within 5 °C of actual Peak	10 ~ 30 sec
Temperature(tP)	
Ramp-down Rate	<6 °C/sec
Time 25 °C to Peak Temperature	<6 minutes

CUSTOMER NOTE:

DISCLAIMER

The product information and the selection guide facilitates the selection of the ALPINESEMI™'s Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review the Data sheet(s) so as to confirm that the Device(s) meets functionality parameters for your application. The information furnished on the Data Sheet and the ALPINESEMI™'s Web Site is believed to be accurate and reliable at the time of preparation of this document. ALPINESEMI™ however, does not assume any inaccuracies that may arise when the components are mounted and removed. Furthermore, ALPINESEMI™ does not assume liability whatsoever, arising out of the application or the use of any of ALPINESEMI™'s product(s). Neither, does it convey any license under its patent rights nor the rights of others. These products are not guaranteed for use in life saving/support appliances or systems. ALPINESEMI™'s customers using these products (either as individual Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and ALPINESEMI™ will not be responsible in any way(s) for any damage(s) resulting from such use.

Please check the website www.alpinesemi.com for continues updates and revision of datasheets.

DESIGN CHANGES: ALPINESEMI™ strives for continuous improvement and reserves the right to change the specifications of its products without prior notice. ALPINESEMI™ reserves the right to discontinue product lines without prior notice. Any product selection is a recommendation based on best understanding of such product(s) by our engineers. However, buyers are advised to rely on their own judgment for such selection of the products.

ALPINESEMI™ makes no warranty, representation or guarantee regarding the suitability of its products for any particular applications. Neither does ALPINESEMI™ assume any liability arising out of the applications nor the use of such products. ALPINESEMI™ specifically disclaims all liabilities either consequential or incidental.

All rights of the product and datasheet are reserved to ALPINESEMI™.

All logos and information provided in the datasheets are for reference only. Any registered and/or trademark/logos belonging to respective companies be the property of those companies. ALPINESEMI™ extends the courtesy to them, if any of the information found in its datasheet.

Component Disposal Instructions

- 1. ALPINESEMI™ Semiconductor Devices are RoHS compliant and hence customers are requested to dispose as per the prevailing Environmental Legislation put forth in their specific country.
- 2. In Europe, please dispose as per EU Directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE).

sales@alpinesemi.com www.alpinesemi.com