

130A, 40V N-CHANNEL SUPER TRENCH POWER MOSFET

DESCRIPTION:

The ALP130N04S is an 130A, 40V N-Channel Super Trench Power MOSFET and it has fast a High density cell design for low $R_{DS(on)}$

FEATURES:

- $V_{(BR)DSS} = 40V, I_D = 130A$
- $Arr R_{DS(ON)MAX} = 1.75 mΩ$ @V_{GS} = 10V, I_D = 130A.
- Arr R_{DS(ON)MAX} = 2.5m Ω @V_{GS} = 4.5V, I_D = 130A.
- High density cell design for low R_{DS(on)}.
- Split Gate Trench MOSFET technology
- > Excellent package for heat dissipation.
- Lead-free parts meet RoHS requirements
- Suffix "-H" indicated Halogen Free part, ex. ALP130N04S-H

APPLICATIONS:

- Consumer electronic power supply
- Motor control
- Synchronous-rectification
- Inverters

MECHANICAL CHARACTERISTICS

- Case: Molded plastic, DFN5X6-8L
- Mounting Position: Any.

MAXIMUM RATINGS

MAXIMUM RATINGS @ T_A = 25 °C unless otherwise specified					
PARAMETER	SYMBOL	RATINGS	UNIT		
Drain-Source Voltage	V_{DS}	40	V		
Gate-Source Voltage	V_{GS}	±20	V		
Continuous Drain Current					
T _C =25°C	I _D	130	Α		
T _C =100°C		82			
Pulsed Drain Current (Note 1)	I _{DM}	390	А		
Power Dissipation T _C =25°C	P_D	115	W		
Thermal Resistance Junction to Ambient	$R_{ heta JA}$	50	°C/W		
Thermal Resistance Junction to Case	$R_{ heta JC}$	1.09	°C/W		
Single pulse avalanche energy	E _{AS}	720	mJ		
Operating Junction Temperature	Tı	+150	°C		
Storage Temperature Range	T_{STG}	-55 to +150	°C		

Note:

^{1.} Max. current is limited by bonding wire.

^{2.} UIS tested and pulse width are limited by maximum junction temperature 150°C.

ELECTRICAL CHARACTERISTICS @ TA = 25 °C unless otherwise specified

PARAMETER	CONDITIONS	SYMBOL	MIN	TYP.	MAX	UNIT
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250 μA	V _{(BR)DSS}	40			V
Zero gate voltage drain current	V _{DS} =40V, V _{GS} =0V	I _{DSS}			1.0	μΑ
Gate-body leakage current	V _{GS} = ±20V, V _{DS} = 0V	Igss			±100	nA
ON CHARACTERISTICS						
Gate-Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	$V_{GS(th)}$	1.0	1.8	2.5	V
Drain-to-Source On-Resistance	$V_{GS} = 10V, I_D = 20A$			1.45	1.75	0
(Note 1)	$V_{GS} = 4.5V, I_D = 20A$			1.9	2.5	m $Ω$


DYNAMIC CHARACTERISTICS (Note 2)						
PARAMETER	CONDITIONS	SYMBOL	MIN	TYP.	MAX	UNIT
Input Capacitance	V _{DS} = 25V, V _{GS} = 0V, F _{req} = 1.0 MHz	C _{iss}		7100		pF
Output Capacitance	V _{DS} = 25V, V _{GS} = 0V, F _{req} = 1.0 MHz	Coss		1298		pF
Reserve Transfer Capacitance	V _{DS} = 25V, V _{GS} = 0V, F _{req} = 1.0 MHz	Crss		55		pF

SWITCHING CHARACTERISTICS						
PARAMETER	CONDITIONS	SYMBOL	MIN	TYP.	MAX	UNIT
Total Gate Charge	V _{DS} = 20V, V _{GS} = 10V, I _D = 20A	Q_g		132		nC
Gate to Source Charge	V _{DS} = 20V, V _{GS} = 10V, I _D = 20A	Q_{gs}		25		nC
Gate to Drain Charge	V _{DS} = 20V, V _{GS} = 10V, I _D = 20A	Q_{gd}		24.6		nC
Turn-On Delay Time	$V_{DS} = 20V$, $V_{GS} = 10V$, $I_{D} = 20A$	t _{d(on)}		18.8		nS
Turn-On Rise time	V_{DS} = 20V, V_{GS} = 10V, I_{D} = 20A, R_{G} =3 Ω	tr		70.1		nS
Turn-Off Delay Time	V_{DS} = 20V, V_{GS} = 10V, I_D = 20A, R_G =3 Ω	t _{d(off)}		136.8		nS
Turn-Off Fall time	V_{DS} = 20V, V_{GS} = 10V, I_{D} = 20A, R_{G} =3 Ω	t _f		92.3		nS

SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS						
PARAMETER CONDITIONS		SYMBOL	MIN	TYP.	MAX	UNIT
Diode forward Current (Note 1)		Is			130	Α
Diode forward Voltage	$I_S = 20A$, $V_{GS} = 0V$	V_{DS}			1.3	V
Reverse recovery time	ecovery time $T_J = 25^{\circ}\text{C}$, $I_F = 20\text{A}$, $dI_F/dt = 100\text{A}/\mu\text{S}$ (Note 1)			56		nS
Reverse recovery charge	$T_J = 25$ °C, $I_F = 20A$, $dI_F/dt = 100A/\mu s$ (Note 1)	Qrr		54		nC

Note:

- 1. Pulse test (pulse width $\leq 300\mu s$, Duty cycle $\leq 2\%$.
- 2. Guaranteed by design, not subject to production testing.

beyond boundaries...

TYPICAL DEVICE RATING AND CHARACTERISTICS CURVES (TA = 25 °C unless otherwise noted)

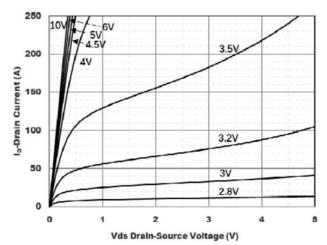


Fig.1 OUTPUT CHARACTERISTICS

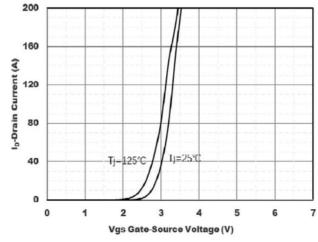


Fig.2 TRANSFER CHARACTERISTICS

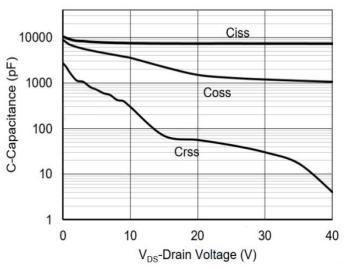


Fig.3 CAPACITANCE CHARACTERISTICS

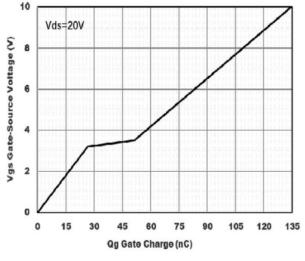


Fig.4 GATE CHARGE

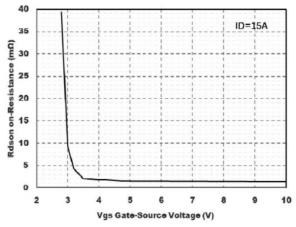


Fig.5 ON-RESISTANCE Vs. DRAIN CURRENT AND GATE VOLATAGE

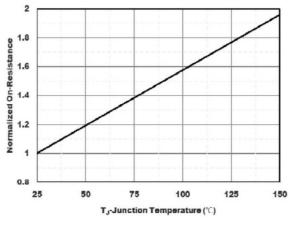
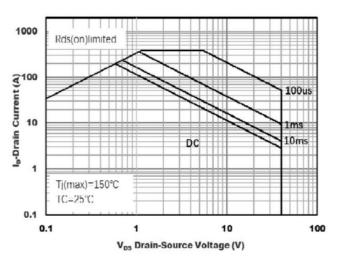



Fig. 6 NORMALIZED ON-RESISTANCE

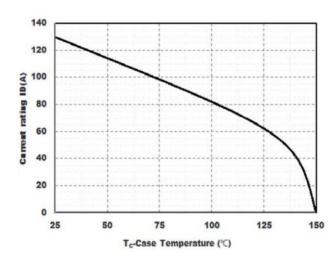


Fig.7 SAFE OPERATING AREA

Fig.8 DRAIN CURRENT

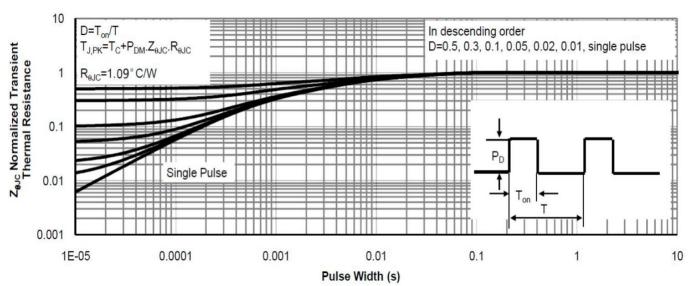
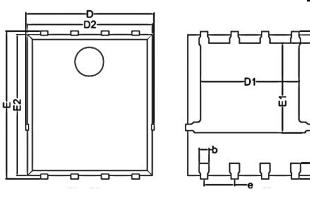
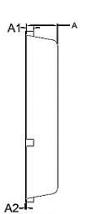


Fig.9 NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE

PINNING INFORMATION


PIN	SIMPLIFIE	D OUTLINE	CIRCUIT DIAGRAM
Pin1 Source Pin2 Source Pin3 Source Pin4 Gate Pin5 Drain Pin6 Drain Pin7 Drain Pin8 Drain	1 2 3 4		

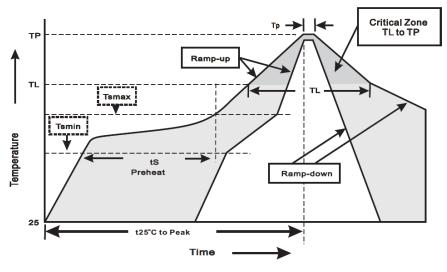


beyond boundaries...

PACKAGE INFORMATION

DFN5X6-8L

OUTLINE DIMENSIONS				
	MILLIMETERS		INCH	IES
SYMBOL	MIN	MAX	MIN	MAX
А	1.000	1.200	0.039	0.047
A1	0.25	4BSC.	0.010	BSC.
A2	0.000	0.100	0.000	0.004
b	0.310	0.510	0.012	0.020
D	5.150	5.550	0.203	0.219
D1	3.920	4.320	0.154	0.170
D2	5.000	5.400	0.197	0.213
Е	5.950	6.350	0.234	0.250
E1	3.520	3.920	0.139	0.154
E2	5.660	6.060	0.223	0.239
е	1270BSC.		0.050	BSC.
L1	0.560	0.760	0.022	0.030
L2	0.500BSC.		0.020	BSC.



beyond boundaries...

SOLDERING PARAMETERS

SUGGESTED THERMAL PROFILES FOR SOLDERING PROCESSES

- 1. Storage environment: Temperature=5 °C~40 °C Humidity=55% ±25%
- 2. Reflow soldering of surface-mount devices

3. Reflow soldering

PROFILE FEATURE	SOLDERING CONDITION
Average ramp-up rate (T _L to T _P)	<3 °C/sec
Preheat	
- Temperature Min (T _{smin})	150 °C
- Temperature Max (T _{smax})	200 °C
- Time (min to max) (t _s)	60 ~ 120 sec
T _{smax} to T _L	
- Ramp-upRate	<3 °C/sec
Time maintained above:	
- Temperature (T _L)	217 °C
- Time(tL)	60 ~ 260 sec
Peak Temperature (T _P)	255 °C-0/+5 °C
Time within 5 °C of actual Peak	10 ~ 30 sec
Temperature(tP)	
Ramp-down Rate	<6 °C/sec
Time 25 °C to Peak Temperature	<6 minutes

CUSTOMER NOTE:

DISCLAIMER

The product information and the selection guide facilitates the selection of the ALPINESEMI™'s Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review the Data sheet(s) so as to confirm that the Device(s) meets functionality parameters for your application. The information furnished on the Data Sheet and the ALPINESEMI™'s Web Site is believed to be accurate and reliable at the time of preparation of this document. ALPINESEMI™ however, does not assume any inaccuracies that may arise when the components are mounted and removed. Furthermore, ALPINESEMI™ does not assume liability whatsoever, arising out of the application or the use of any of ALPINESEMI™'s product(s). Neither, does it convey any license under its patent rights nor the rights of others. These products are not guaranteed for use in life saving/support appliances or systems. ALPINESEMI™'s customers using these products (either as individual Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and ALPINESEMI™ will not be responsible in any way(s) for any damage(s) resulting from such use.

Please check the website www.alpinesemi.com for continues updates and revision of datasheets.

DESIGN CHANGES: ALPINESEMI™ strives for continuous improvement and reserves the right to change the specifications of its products without prior notice. ALPINESEMI™ reserves the right to discontinue product lines without prior notice. Any product selection is a recommendation based on best understanding of such product(s) by our engineers. However, buyers are advised to rely on their own judgment for such selection of the products.

ALPINESEMI™ makes no warranty, representation or guarantee regarding the suitability of its products for any particular applications. Neither does ALPINESEMI™ assume any liability arising out of the applications nor the use of such products. ALPINESEMI™ specifically disclaims all liabilities either consequential or incidental.

All rights of the product and datasheet are reserved to ALPINESEMI™.

All logos and information provided in the datasheets are for reference only. Any registered and/or trademark/logos belonging to respective companies be the property of those companies. ALPINESEMI™ extends the courtesy to them, if any of the information found in its datasheet.

Component Disposal Instructions

- 1. ALPINESEMI™ Semiconductor Devices are RoHS compliant and hence customers are requested to dispose as per the prevailing Environmental Legislation put forth in their specific country.
- 2. In Europe, please dispose as per EU Directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE).

sales@alpinesemi.com www.alpinesemi.com