

5A, 900V N-CHANNEL SUPER-JUNCTION MOSFET

DESCRIPTION:

The ALP05N90 is an 5A, 900V N-Channel Super Junction MOSFET and it has fast switched speed.

FEATURES:

- V_{DS} =900V, I_{D} = 5A
- $R_{DS (ON)} \le 3.3 m\Omega @V_{GS} = 10V, I_D = 2.5A.$
- Low reverse transfer capacitance.
- Fast switching capability.
- Improved dv/dt capability, high ruggedness.
- RoHS compliant & halogen-free.
- Suffix "-H" indicated Halogen Free part, ex. ALP05N90-H

APPLICATIONS:

- Switching Power Supply.
- Inverter motor applications.
- High power inverter system.

MECHANICAL CHARACTERISTICS

- Epoxy: UL94-V0 rated flame retardant.
- Case: Molded plastic, ITO-220AB.
- Terminals: Solder plated, solderable per MIL-STD-750, Method 2026
- Mounting Position: Any.

MAXIMUM RATINGS

MAXIMUM RATINGS @ $T_A = 25$ °C unless otherwise specified				
PARAMETER	SYMBOL	RATINGS	UNIT	
Drain-Source Voltage	V_{DS}	900	V	
Gate-Source Voltage	V_{GS}	±30	V	
Continuous Drain Current	I _D	5	А	
Pulsed Drain Current (Note 2)	I _{DM}	10	А	
Single pulse avalanche energy (Note 3)	E _{AS}	240	mJ	
Peak diode recovery dv/dt (Note 4)	dv/dt	3.1	V/ns	
Power Dissipation (T _C =25 °C)	P _D	36	W	
Thermal Resistance Junction to Ambient	$R_{ heta JA}$	62.5	°C/W	
Thermal Resistance Junction to Case	$R_{ heta$ JC	3.66	°C/W	
Operating Junction Temperature	TJ	+150	°C	
Storage Temperature Range	T _{STG}	-55 to +150	°C	

Note:

- 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
- 2. Repetitive rating: pulse width limited by maximum junction temperature.
- 3. L = 30mH, I_{AS} = 4.0A, V_{DD} = 50V, R_{G} = 25 Ω Starting T_{i} = 25 °C.
- 4. $I_{SD} \le 5.0A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_j = 25$ °C.
- 5. Device mounted on FR-4 substrate PC board, 2oz copper, with 1inch square copper plate.

ELECTRICAL CHARACTERISTICS @ TA = 25 °C unless otherwise specified

PARAMETER	CONDITIONS	SYMBOL	MIN	TYP.	MAX	UNIT
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage	I _D =250 μA, V _{GS} = 0V	BV _{DSS}	900			V
Drain-source leakage current	V _{DS} = 900V, V _{GS} =0V	I _{DSS}			1.0	μΑ
Gate-source leakage current	$V_{GS} = \pm 30V, V_{DS} = 0V$	I _{GSS}			±100	nA
ON CHARACTERISTICS						
Gate-Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	V _{GS(TH)}	3.0		5.0	V
Static Drain-to-Source On- Resistance (Note 4)	V _{GS} = 10V, I _D = 2.5A	R _{DS(ON)}			3.3	Ω

SWITCHING PARAMETERS						
PARAMETER	CONDITIONS	SYMBOL	MIN	TYP.	MAX	UNIT
Input Capacitance		C _{iss}		780		
Output Capacitance	V _{DS} = 25V, V _{GS} = 0V, F _{req} = 1.0 MHz	Coss		75		pF
Reserve Transfer Capacitance		C_{rss}		2		
Total Gate Charge (Note 1)		Q_{g}		14		
Gate to Source Charge	$V_{DS} = 720V$, $V_{GS} = 10V$, $I_D = 5A$, $I_G=1mA$ (Note 1, 2)	Q_{gs}		5		nC
Gate to Drain Charge		Q_{gd}		1.2		
Turn-On Delay Time (Note 1)		t _{d(on)}		10		
Rise time	$V_{DS} = 100V$, $I_D = 5A$, $V_{GS} = 10V$, $R_G = 25\Omega$	tr		18		».C
Turn-Off Delay Time	(Note 1, 2)	t _{d(off)}		35		nS
Fall time		t _f		26		

SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS						
PARAMETER	CONDITIONS	SYMBOL	MIN	TYP.	MAX	UNIT
Continuous source current	Integral DNI diada in MOSEET	Is			5	
Pulsed source current	Integral PN - diode in MOSFET	I _{SM}			10	А
Drain-source diode forward voltage (Note 1)	I _{SD} = 5A, V _{GS} = 0V	V_{SD}			1.4	V
Reverse recovery time (Note 1)	\\\\\\\	t _{rr}		450		ns
Reverse recovery charge	V _{GS} =0V, I _S =5A, di/dt =100A/μs	Q _{rr}		8.5		μC

Note:

- 1. Pulse test (pulse width \leq 300 μ s, Duty cycle \leq 2%.
- 2. Essentially independent of operating temperature.

TYPICAL DEVICE RATING AND CHARACTERISTICS CURVES (TA = 25 °C unless otherwise noted)

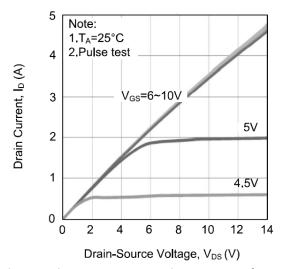


Fig.1 Drain Current Vs. Drain-Source Voltage

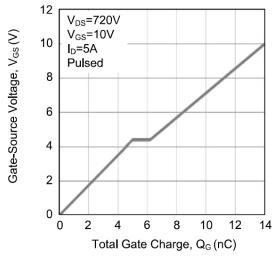


Fig.3 Gate Charge Characteristics

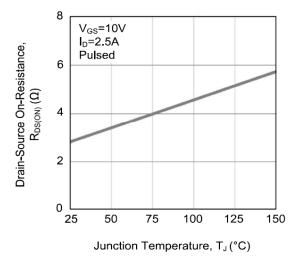


Fig.5 Drain-Source On-Resistance Vs. Junction Temperature

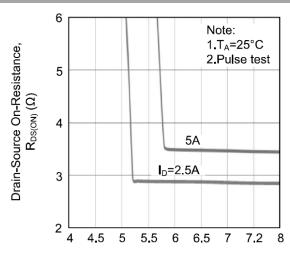
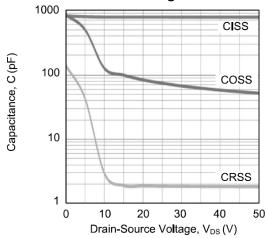



Fig.2 Drain Source On-Resistance Vs. Gate-Source Voltage

Fig.4 Capacitance Characteristics

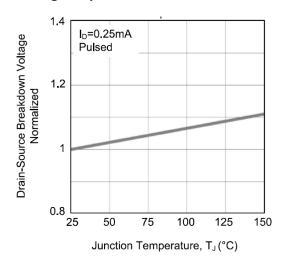


Fig.6 Breakdown Voltage Vs. Junction Temperature

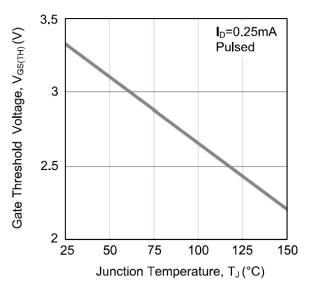


Fig.7 Gate Threshold Voltage Vs. Junction Temperature

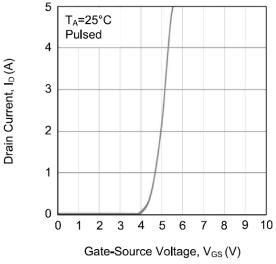


Fig.9 Drain Current Vs. Gate-Source Voltage

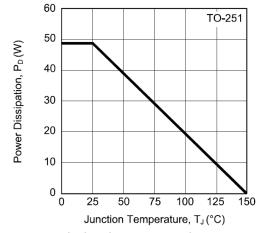


Fig.11 Power Dissipation Vs. Junction Temperature

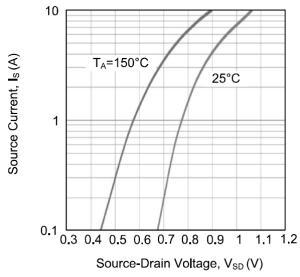


Fig.8 Source Current Vs. Source-Drain Voltage

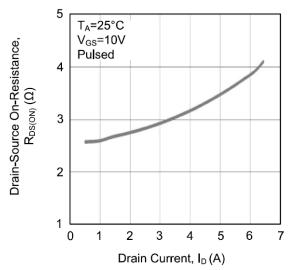


Fig.10 Drain-Source On-Resistance Vs. Drain Current

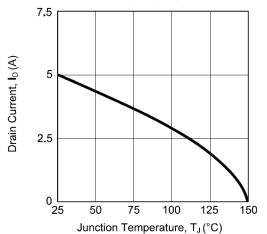
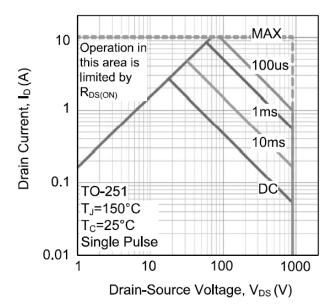
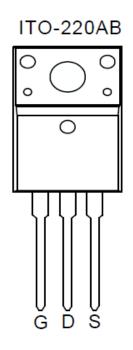
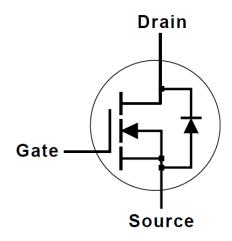


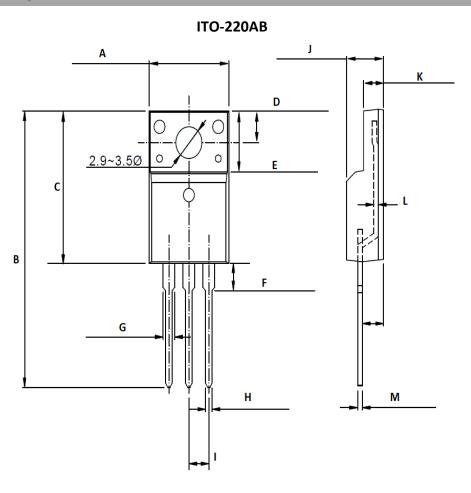
Fig.12 Drain Current Vs. Junction Temperature




Fig.13 Safe Operating Area

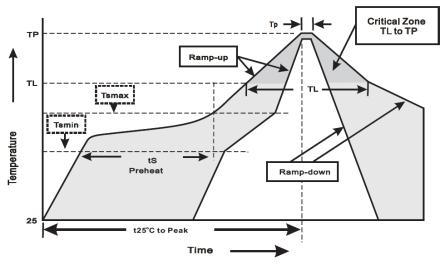


PINNING INFORMATION


SIMPLIFIED OUTLINE

SYMBOL

PACKAGE INFORMATION



OUTLINE DIMENSIONS					
	MILLIMETERS		INCHE	S	
SYMBOL	MIN	MAX	MIN	MAX	
Α	9.86	10.46	0.388	0.412	
В	28.20	29.20	1.110	1.150	
С	15.40	16.40	0.606	0.646	
D	3.05	3.55	0.120	0.140	
E	6.40	7.00	0.252	0.276	
F	2.95	3.55	0.116	0.140	
G	1.10	1.50	0.043	0.059	
Н	0.60	1.00	0.024	0.039	
1	2.54 Typ. 0.100 Typ.			ур.	
J	4.40	5.00	0.173	0.197	
К	2.30	2.80	0.091	0.110	
L	0.6 Ref.				
М	0.30	0.70	0.012	0.028	

SOLDERING PARAMETERS

SUGGESTED THERMAL PROFILES FOR SOLDERING PROCESSES

- 1. Storage environment: Temperature=5 °C~40 °C Humidity=55% ±25%
- 2. Reflow soldering of surface-mount devices

3. Reflow soldering

PROFILE FEATURE	SOLDERING CONDITION
Average ramp-up rate (T _L to T _P)	<3 °C/sec
Preheat	
- Temperature Min (T _{smin})	150 °C
- Temperature Max (T _{smax})	200 °C
- Time (min to max) (t _s)	60 ~ 120 sec
T _{smax} to T _L	
- Ramp-upRate	<3 °C/sec
Time maintained above:	
- Temperature (T _L)	217 °C
- Time(tL)	60 ~ 260 sec
Peak Temperature (T _P)	255 °C-0/+5 °C
Time within 5 °C of actual Peak	10 ~ 30 sec
Temperature(tP)	
Ramp-down Rate	<3 °C/sec
Time 25 °C to Peak Temperature	<6 minutes

CUSTOMER NOTE:

DISCLAIMER

The product information and the selection guide facilitates the selection of the ALPINESEMI™'s Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review the Data sheet(s) so as to confirm that the Device(s) meets functionality parameters for your application. The information furnished on the Data Sheet and the ALPINESEMI™'s Web Site is believed to be accurate and reliable at the time of preparation of this document. ALPINESEMI™ however, does not assume any inaccuracies that may arise when the components are mounted and removed. Furthermore, ALPINESEMI™ does not assume liability whatsoever, arising out of the application or the use of any of ALPINESEMI™'s product(s). Neither, does it convey any license under its patent rights nor the rights of others. These products are not guaranteed for use in life saving/support appliances or systems. ALPINESEMI™'s customers using these products (either as individual Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and ALPINESEMI™ will not be responsible in any way(s) for any damage(s) resulting from such use.

Please check the website www.alpinesemi.com for continues updates and revision of datasheets.

DESIGN CHANGES: ALPINESEMI™ strives for continuous improvement and reserves the right to change the specifications of its products without prior notice. ALPINESEMI™ reserves the right to discontinue product lines without prior notice. Any product selection is a recommendation based on best understanding of such product(s) by our engineers. However, buyers are advised to rely on their own judgment for such selection of the products.

ALPINESEMI™ makes no warranty, representation or guarantee regarding the suitability of its products for any particular applications. Neither does ALPINESEMI™ assume any liability arising out of the applications nor the use of such products. ALPINESEMI™ specifically disclaims all liabilities either consequential or incidental.

All rights of the product and datasheet are reserved to ALPINESEMI™.

All logos and information provided in the datasheets are for reference only. Any registered and/or trademark/logos belonging to respective companies be the property of those companies. ALPINESEMI™ extends the courtesy to them, if any of the information found in its datasheet.

Component Disposal Instructions

- 1. ALPINESEMI™ Semiconductor Devices are RoHS compliant and hence customers are requested to dispose as per the prevailing Environmental Legislation put forth in their specific country.
- 2. In Europe, please dispose as per EU Directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE).

sales@alpinesemi.com www.alpinesemi.com